img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
отражение
Лента событий: Sam777e решил задачу "Дырявый квадрат-3" (Математика):
Рисунок
Rss

Задачи: Математика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 51
всего попыток: 762
Задача опубликована: 15.08.11 08:00
Прислал: Timur img
Вес: 1
сложность: 3 img
класс: 8-10 img
баллы: 100
Темы: алгоритмыimg
Лучшее решение: bbny

Даны чашечные весы, имеющие особенность — они могут выдержать ровно 3 взвешивания (неважно в каком порядке) неравных грузов, после чего ломаются. Одинаковые веса можно уравновешивать на этих весах бесконечное количество раз. Среди N монет есть одна фальшивая, вес которой меньше настоящих. Найдите максимальное N при котором можно найти фальшивую не более, чем за 7 взвешиваний на этих весах.

Задачу решили: 12
всего попыток: 49
Задача опубликована: 29.08.11 08:00
Прислал: Timur img
Вес: 1
сложность: 3 img
класс: 8-10 img
баллы: 100
Лучшее решение: Sam777e

На листе бумаги в форме равностороннего треугольника со стороной 30 см разбрызганы капли чернил. Если на этом листе нарисовать (косоугольную) систему координат с произвольным началом, осями, параллельными любым двум сторонам листа, и масштабом 1 см вдоль обеих осей, то хотя бы одна точка с целыми координатами обязательно окажется окрашенной чернилами. Какое наименьшее целое число квадратных миллиметров может составлять общая площадь всех клякс? (Можно считать, что каждая клякса — многоугольник или круг, а всех клякс — конечное число.)

(Присланная задача изменена администрацией)
Задачу решили: 28
всего попыток: 46
Задача опубликована: 26.12.12 08:00
Прислал: Timur img
Вес: 1
сложность: 3 img
класс: 8-10 img
баллы: 100
Лучшее решение: nellyk

Определим функцию двух переменных f(n,m), где n≥0 (из множества неотрицательных целых чисел), а m любое целое число так, что f(n,m):{Z+xZ}→Z и определяется следующим образом:

1. f(0,m)=1, если m=0 или m=1;

2. f(0,m)=0, если m≠0 и m≠1;

3. f(n,m)=f(n-1,m)+f(n-1,m-2·n) при n>0; любых m;

Найдите сумму  \sum\limits_{m=0}^{2551} f(50,m)

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.