img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
отражение
Лента событий: Mangoost решил задачу "REBUSы" (Математика):
Рисунок
Rss

Задачи: Математика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 130
всего попыток: 147
Задача опубликована: 01.06.11 08:00
Прислал: Timur img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100

Найдите такое наименьшее натуральное число N, что N/2 — квадрат натурального числа, N/3 — куб натурального числа, а N/5 —  пятая степень натурального числа.

Задачу решили: 87
всего попыток: 123
Задача опубликована: 22.08.11 08:00
Прислал: Timur img
Вес: 1
сложность: 2 img
класс: 6-7 img
баллы: 100
Лучшее решение: zmerch

Десятизначное число составлено следующим образом: первая цифра равна количеству единиц в этом числе, вторая цифра — количеству двоек и т.д., десятая цифра — количеству нулей. Найдите сумму всех таких чисел.

Задачу решили: 22
всего попыток: 101
Задача опубликована: 12.03.12 08:00
Прислал: Timur img
Вес: 1
сложность: 4 img
класс: 8-10 img
баллы: 100
Лучшее решение: 0Vlas

Через точку Aна окружности единичного радиуса (r=1) проведена прямая lна расстоянии \frac{1}{2} от ее центра O. На прямой l вне окружности и слева от точки Aотметим на расстоянии n_i от нее точку B_i, а на расстоянии m_i слева от точки B_i - точку C_i и проведем через них окружности с центром в т. O так, что получим три различные концентричные окружности (см. рис.). Через каждую точку проведем касательную к окружности на которой она лежит так, что пересечение этих касательных образуют треугольник T_i=D_i E_i F_i.

t001.jpg

Из двух прямых, которые можно провести через точку на окружности на данном расстоянии от ее центра - рассматривается только одна из них. Из двух лучей, на которые окружность делит эту прямую, точки откладываются только на одном. Так, как это показано на рисунке. 

Если n_k и m_k натуральные числа, существует k точек B_k и соответствующих им точек C_k таких, что площади всех треугольников T_k равны, причем S( T_k )=18480. Найдите все такие точки B_k, в ответе укажите сумму соответствующих им n_k.

Задачу решили: 51
всего попыток: 105
Задача опубликована: 22.05.12 08:00
Прислал: Timur img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: Vkorsukov

В треугольник ABC со сторонами AB=62, BC=962, AC=960, будем вписывать n окружностей одинакового радиуса (n от 1 до бесконечности, натуральное) так, что все они касаются стороны AC, соседних окружностей, а крайние окружности касаются сторон AB и BC соответственно. (см.рис.). Существует конечная последовательность k натуральных чисел ai {a1,a2,a3,...,ak} таких, что если вписывать ai окружностей в данный треугольник, у полученных окружностей радиусы будут натуральными числами. Найдите эту последовательность. В ответе укажите сумму всех ее членов .

 

111.gif

Задачу решили: 80
всего попыток: 93
Задача опубликована: 27.06.12 08:00
Прислал: Timur img
Источник: Малый Мехмат МГУ
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Лучшее решение: 0Vlas

Будем строить множества из 2012 произвольных действительных чисел так, чтобы сумма любых 777 чисел из этого множества была строго положительна. Какое максимально возможное количество отрицательных чисел может быть в таком множестве?

Задачу решили: 33
всего попыток: 63
Задача опубликована: 19.12.12 08:00
Прислал: Timur img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: TALMON (Тальмон Сильвер)

Для двух натуральных x и k, рассмотрим два числа: x и (x+k). Определим функцию f(k)=i, где i - количество таких чисел xi, что и xi, и xi+k являются точными квадратами некоторых натуральных чисел. Например f(1)=0; f(3)=1 {x=1}; f(21)=2 {x1=4, x2=100} и т.д. В интервале 1<k<212 найдите все такие k, что f(k)=15. В ответе необходимо указать сумму всех таких k.

 

Задачу решили: 67
всего попыток: 101
Задача опубликована: 21.12.12 08:00
Прислал: Timur img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: nellyk

Найдите минимальное натуральное число k такое, что при любых натуральных n, значение многочлена P(n)=7·n37+37·n7+4·k·n - делится на 259 без остатка.

Задачу решили: 28
всего попыток: 46
Задача опубликована: 26.12.12 08:00
Прислал: Timur img
Вес: 1
сложность: 3 img
класс: 8-10 img
баллы: 100
Лучшее решение: nellyk

Определим функцию двух переменных f(n,m), где n≥0 (из множества неотрицательных целых чисел), а m любое целое число так, что f(n,m):{Z+xZ}→Z и определяется следующим образом:

1. f(0,m)=1, если m=0 или m=1;

2. f(0,m)=0, если m≠0 и m≠1;

3. f(n,m)=f(n-1,m)+f(n-1,m-2·n) при n>0; любых m;

Найдите сумму  \sum\limits_{m=0}^{2551} f(50,m)

Задачу решили: 65
всего попыток: 106
Задача опубликована: 18.01.13 08:00
Прислал: Timur img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: leonid (Леонид Шляпочник)

Для данной функции f(x)=\frac{2013^{2x}}{2013^{2x}+2013}., найдите сумму 

S=\sum\limits_{k=1}^{2013} f(\frac{k}{2013}).

Задачу решили: 36
всего попыток: 94
Задача опубликована: 25.01.13 08:00
Прислал: Timur img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: zmerch

Рассмотрим множество квадратов для первых 40 натуральных чисел:

S={12,22,32,42,..., 392,402}.

Для каждого из чисел 1<n<41, рассмотрим все подмножества S, которые состоят ровно из n элементов. Если при фиксированном n, в каждом из подмножеств длины n найдутся хотя бы два элемента x и y такие, что x+y =p простое число, будем называть число n - квадратнопростым. Найдите минимальное квадратнопростое число n для данного множества S.

(Например для множества S={1, 4, 9}, n=2: {1, 4}, {1, 9}, {4, 9}; n=3: {1, 4, 9}, и минимальное квадратнопростое число n=3).

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.