Лента событий:
Sam777e решил задачу "Дырявый квадрат-3" (Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
12
всего попыток:
49
На листе бумаги в форме равностороннего треугольника со стороной 30 см разбрызганы капли чернил. Если на этом листе нарисовать (косоугольную) систему координат с произвольным началом, осями, параллельными любым двум сторонам листа, и масштабом 1 см вдоль обеих осей, то хотя бы одна точка с целыми координатами обязательно окажется окрашенной чернилами. Какое наименьшее целое число квадратных миллиметров может составлять общая площадь всех клякс? (Можно считать, что каждая клякса — многоугольник или круг, а всех клякс — конечное число.)
(Присланная задача изменена администрацией)
Задачу решили:
22
всего попыток:
101
Через точку на окружности единичного радиуса (r=1) проведена прямая на расстоянии от ее центра . На прямой вне окружности и слева от точки отметим на расстоянии от нее точку , а на расстоянии слева от точки - точку и проведем через них окружности с центром в т. так, что получим три различные концентричные окружности (см. рис.). Через каждую точку проведем касательную к окружности на которой она лежит так, что пересечение этих касательных образуют треугольник . Из двух прямых, которые можно провести через точку на окружности на данном расстоянии от ее центра - рассматривается только одна из них. Из двух лучей, на которые окружность делит эту прямую, точки откладываются только на одном. Так, как это показано на рисунке. Если и натуральные числа, существует точек и соответствующих им точек таких, что площади всех треугольников равны, причем . Найдите все такие точки , в ответе укажите сумму соответствующих им .
Задачу решили:
71
всего попыток:
137
Пусть AB - диаметр некоторой окружности. Из точек A и B, под углами и к AB, проведем хорды AE и BD, пересекающиеся в точке C. Найдите площадь треугольника CDE, если длина касательных FE и FD равны.
Задачу решили:
51
всего попыток:
105
В треугольник ABC со сторонами AB=62, BC=962, AC=960, будем вписывать n окружностей одинакового радиуса (n от 1 до бесконечности, натуральное) так, что все они касаются стороны AC, соседних окружностей, а крайние окружности касаются сторон AB и BC соответственно. (см.рис.). Существует конечная последовательность k натуральных чисел ai {a1,a2,a3,...,ak} таких, что если вписывать ai окружностей в данный треугольник, у полученных окружностей радиусы будут натуральными числами. Найдите эту последовательность. В ответе укажите сумму всех ее членов .
Задачу решили:
38
всего попыток:
187
Продолжения сторон (AD и BC) и (AB и CD) выпуклого четырехугольника ABCD пересекаются в точках E и F соответственно. Для определенности будем считать, что E и F лежат по одну сторону от прямой AC. (см.рис.) Внутри диагонали AC произвольным образом выбрана точка G. Прямые BG || DH || EI || FJ параллельны друг другу, а точки H, I, J являются точками пересечения соответствующих прямых с прямой AC так, что |DH|=a, |EI|=b, |FJ|=c. Найдите длину отрезка |BG|, если a=9, b=3, c=6.
Задачу решили:
33
всего попыток:
148
Рассмотрим полуокружность с центром в точке O и радиусом |AO|=|OB|=17. Внутри отрезка OB произвольным образом выбираем точку C при этом |AO|<|AC|<|AB|. С центром в точке C и радиусом |CB|=|CD| построим еще одну полуокружность. Через точку D проведем прямую, перпендикулярную прямой AB и пересекающуюся с большой полуокружностью в точке D'. В фигурный сектор DD'B вписана окружность с центром в точке I и касающаяся прямой DD' и обеих полуокружностей в точках H, G и F соответственно. (см. рис.) Проведем прямую через точки С и I, которая пересекается с прямой DD' в точке E. Найдите все возможные случаи, когда длина отрезка |CE| - целое число. В ответ введите сумму найденных вариантов.
Задачу решили:
66
всего попыток:
95
На окружности с центром в т.O выбраны точки A и B так, что угол AOB=90°. На бОльшей дуге AB произвольным образом выбрана точка С (будем считать, что B и С лежат по одну сторону от прямой AO) через которую проведена касательная к нашей окружности. Из точек A и B проведены перпендикуляры к этой касательной, пересекающие ее в точках D и E соответственно. Причем оказалось, что |AD|=686, а |BE|=252. Найдите радиус окружности |AO|.
Задачу решили:
44
всего попыток:
98
D, E, F - это точки касания вписанной в треугольник ΔABC окружности с центром в т .O (см.рис.). Найдите площадь треугольника ΔDEF, если известно, что площадь треугольника ΔABC=264, r=6 - радиус вписанной окружности ΔABC, R=65/3 - радиус описанной около ΔABC окружности.
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|