Лента событий:
vochfid добавил комментарий к задаче "Десятичная запись квадрата" (Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
32
всего попыток:
250
При каком наименьшем k в любой раскраске клеток таблицы 2012?k в 1006 цветов найдутся четыре клетки одного цвета, стоящие на пересечении двух строк и двух столбцов?
Задачу решили:
71
всего попыток:
114
Несколько (больше одного) человек, каждый из которых вначале имеет 300 долларов, играют в казино. Один раунд игры заключается в следующем. Все игроки отдают по 10 долларов крупье, затем один из них по жребию объявляется проигравшим. Он раздаёт все свои деньги поровну всем остальным и выходит из игры. В итоге оказалось, что у последнего оставшегося игрока капитал вновь составляет 300 долларов. Сколько человек пришло в казино?
Задачу решили:
39
всего попыток:
52
Сколько существует 1 <= n <= 2013 таких, что существует перестановка a1, a2, ..., an чисел 1, 2, ..., n в которой ни для каких индексов i < j < k не выполняется равенство ak=(ai+aj)/2?
Задачу решили:
22
всего попыток:
155
У Санта-Клауса, как и обычно это бывает перед Новым Годом есть 8 различных подарков и несколько одинаковых мешков красного цвета (сам он синий). В каждом мешке лежит ровно два предмета(два мешка, два подарка или мешок и подарок). В частности, тот единственный мешок, который Санта-Клаус держит на плече, тоже содержит два предмета. Сколько существует способов разложить подарки по мешкам?
Задачу решили:
33
всего попыток:
47
В обществе из 15 членов каждое непустое подмножество считается комиссией. В каждой комиссии нужно выбрать председателя, соблюдая правило: если комиссия C является объединением нескольких меньших комиссий, то председателем C должен быть один из председателей этих меньших комиссий. Cколькими способами можно выбрать председателей?
Задачу решили:
28
всего попыток:
210
Есть 1000 белых кубиков со стороной 1. Пушистая девочка Оля хочет сложить из них всех какой-нибудь параллелепипед, белый снаружи. Какое наименьшее число граней должен испачкать проказник Федя, чтобы ей помешать?
Задачу решили:
65
всего попыток:
77
Последовательность x1, x2, x3,…, задана формулой xn = 2n(n+1). Какое наибольшее количество подряд идущих её членов могут быть точными квадратами?
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|