img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
отражение
Лента событий: Kf_GoldFish добавил комментарий к решению задачи "Дырявый квадрат-4" (Математика):
Рисунок
Rss

Задачи: Математика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
+ 9
+ЗАДАЧА 802. 20 чисел (Голованов А.)
  
Задачу решили: 41
всего попыток: 169
Задача опубликована: 12.10.12 08:00
Прислал: nauru img
Источник: Санкт-Петербургская математическая олимпиада
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: zmerch

Саша задумал 20 натуральных чисел и вычислил все возможные произведения, составленные из пар задуманных чисел. Получилось 190 произведений. Найдите наибольшее число произведений гарантированно заканчивающихся на одну и ту же цифру.

(Хотелось бы иметь математическое решение, а не программу.)
Задачу решили: 65
всего попыток: 77
Задача опубликована: 19.11.12 08:00
Прислал: nauru img
Источник: Санкт-Петербургская математическая олимпиада
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: pvpsaba (Saba Dzmanashvili)

Дан выпуклый четырехугольник АВСD. Серединные перпендикуляры к диагоналям BD и AC пересекают AD в точках  X и Y соответственно, причем X лежит между А и Y. Оказалось что прямые BX и CY параллельны. Найти угол (в градусах) между BD и АС.

Задачу решили: 64
всего попыток: 66
Задача опубликована: 26.11.12 08:00
Прислал: nauru img
Источник: Санкт-Петербургская математическая олимпиада
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: Sam777e

Серединные перпендикуляры к диагоналям BD и АС вписанного четырехугольника АВСD пересекают сторону AD  в точках X и Y соответственно. Пусть М середина ВС и расстояние от М до прямой ВХ = k, а расстояние до прямой СY равно u. Найти отношение k/u. 

Задачу решили: 108
всего попыток: 166
Задача опубликована: 28.11.12 08:00
Прислал: nauru img
Источник: Санкт-Петербургская математическая олимпиада
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Лучшее решение: Angelina

Число 2003/(2^2003) записано в виде конечной десятичной дроби. Какая цифра у него стоит на четвертом месте с конца?

Задачу решили: 69
всего попыток: 88
Задача опубликована: 30.11.12 08:00
Прислал: nauru img
Источник: Кубок Колмогорова
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: Sam777e

Даны две арифметические прогрессии a1, a2… и b1, b2, …. (арифметическая прогрессия — это последовательность, в которой an = an–1+d, где d — некоторое число, единое для всей последовательности). Известно, что a1 = b1, и для каждого номера i остатки от деления ai и bi на i совпадают. Найдите значение выражения a2012- b2012.

Задачу решили: 56
всего попыток: 277
Задача опубликована: 05.12.12 08:00
Прислал: nauru img
Источник: Санкт-Петербургская математическая олимпиада ...
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: TALMON (Тальмон Сильвер)

Десять школьников стоят в ряд. Каждую минуту какие-то два соседних школьника меняются местами. Через некоторое время выяснилось, что каждый из школьников успел побывать на первом и последнем месте. Найдите минимальное число минут которое могло пройти.

Задачу решили: 108
всего попыток: 229
Задача опубликована: 07.12.12 08:00
Прислал: nauru img
Источник: Кубок Колмогорова
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Темы: логикаimg
Лучшее решение: Angelina

В отряде восемь бойцов. Каждую ночь трое уходят в разведку, причём, никакие двое бойцов не должны ходить в разведку вместе дважды. Найдите максимальное возможное число ночей, в которые отряд может посылать разведчиков.

Задачу решили: 130
всего попыток: 156
Задача опубликована: 17.12.12 08:00
Прислал: nauru img
Источник: Уральский Турнир Юных математиков 2012
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Темы: логикаimg
Лучшее решение: leonid (Леонид Шляпочник)

В мешке 100 котов — черных, белых и серых. Количество чёрных котов больше, чем удвоенное количество белых; утроенное количество белых котов больше, чем учетверённое количество серых; утроенное количество серых котов больше количества чёрных. Сколько котов черного цвета в мешке?

Задачу решили: 97
всего попыток: 201
Задача опубликована: 31.12.12 08:00
Прислал: nauru img
Источник: Уральский Турнир Юных математиков 2012
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Темы: логикаimg
Лучшее решение: TALMON (Тальмон Сильвер)

Каждый житель острова людоедов принадлежит к одному из двух племён: рыцарей, которые всегда говорят правду, или лжецов, которые всегда лгут. Однажды 1000 островитян встали в круг, и каждый заявил: «Оба моих соседа не из моего племени». Какое наибольшее количество рыцарей могло стоять в кругу?

Задачу решили: 85
всего попыток: 155
Задача опубликована: 14.01.13 08:00
Прислал: nauru img
Источник: Уральский Турнир Юных математиков
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Лучшее решение: andervish (Андрей Вишневый)

Число назовем хорошим, если оно 20-значное и любое другое 20-значное число с такой же суммой цифр больше него. Сколько существует хороших чисел?

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.