Лента событий:
TALMON решил задачу "Прямоугольник на 4 части" (Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
98
всего попыток:
136
На какие цифры не может оканчиваться натуральное число [x]+[3x]+[6x] если х > 0 - вещественное число (через [x] обозначается целая часть x , т.е наибольшее целое число, не превосходящее x). В ответе укажите произведение цифр.
Задачу решили:
128
всего попыток:
136
Решите уравнение в натуральных числах
Задачу решили:
117
всего попыток:
132
Натуральные числа х,у меньше 2009. Известно,что х делится на 54, у делится на 31, х+у делится на 85. Найти остаток от деления х-у на 23
Задачу решили:
107
всего попыток:
193
В школе, где учится больше 225, но меньше 245 учеников, часть учеников являются отличниками, а остальные хорошистами. После контрольной работы 2/7 отличников стали хорошистами, а хорошисты так и остались хорошистами за исключением одного человека, который стал троечником. При этом хорошистов и отличников стало поровну. Сколько учеников могло быть в школе?
Задачу решили:
68
всего попыток:
69
На стороне ВС трегольника АВС отмечены точки M и N, что CM = MN = NB. К стороне ВС в точке N построен перпендикуляр, пересекающий АВ в точке К. Оказалось что площадь треугольника АМК в 4.5 раза меньше площади исходного треугольника. Найти отношение AB/AC
Задачу решили:
79
всего попыток:
88
Отрезки АС и ВD пересекаются в точке М, причем АВ = СD и угол АСD - прямой. Найдите минимальное значение отношения MD/MA.
Задачу решили:
72
всего попыток:
165
BC — основание равнобедренного треугольника ABC, BD — биссектриса угла B. Выполнено равенство BC = AD+BD. Найдите угол A (в градусах).
Задачу решили:
88
всего попыток:
174
В Бразилии живет много-много диких обезьян. Каждый год 2 января всех обезьян пересчитывают. В 1999 году количество обезьян увеличилось по сравнению с 1998 года ровно на 5%. И в 2000-2003 годах прирост поголовья обезьян каждый год тоже составлял ровно 5%, причем, по данным переписи 2003 года, в стране проживало не более 5000000 диких обезьян. Сколько диких обезьян жило в Бразилии 2 января 2003 года?
Задачу решили:
59
всего попыток:
75
Последовательности (an) и (bn) заданы условиями an+3 = an+2+2an+1+an при n ? 0, a0 = 1, a1 = 2, a2 = 3; bn+3 = bn+2+2bn+1+bn при n ? 0, b0 = 3, b1 = 2, b2 = 1. Сколько существует чисел, встречающихся в обеих последовательностях?
Задачу решили:
32
всего попыток:
250
При каком наименьшем k в любой раскраске клеток таблицы 2012?k в 1006 цветов найдутся четыре клетки одного цвета, стоящие на пересечении двух строк и двух столбцов?
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|