Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
98
всего попыток:
136
На какие цифры не может оканчиваться натуральное число [x]+[3x]+[6x] если х > 0 - вещественное число (через [x] обозначается целая часть x , т.е наибольшее целое число, не превосходящее x). В ответе укажите произведение цифр.
Задачу решили:
128
всего попыток:
136
Решите уравнение в натуральных числах
Задачу решили:
11
всего попыток:
72
В графе 301 вершина. В любом множестве А, содержащем не менее трех вершин этого графа, можно указать три вершины, каждая из которых смежна не более чем с 200 вершинами из А. Какое максимальное количество ребер может быть в этом графе?
Задачу решили:
41
всего попыток:
169
Саша задумал 20 натуральных чисел и вычислил все возможные произведения, составленные из пар задуманных чисел. Получилось 190 произведений. Найдите наибольшее число произведений гарантированно заканчивающихся на одну и ту же цифру.
(Хотелось бы иметь математическое решение, а не программу.)
Задачу решили:
117
всего попыток:
132
Натуральные числа х,у меньше 2009. Известно,что х делится на 54, у делится на 31, х+у делится на 85. Найти остаток от деления х-у на 23
Задачу решили:
107
всего попыток:
193
В школе, где учится больше 225, но меньше 245 учеников, часть учеников являются отличниками, а остальные хорошистами. После контрольной работы 2/7 отличников стали хорошистами, а хорошисты так и остались хорошистами за исключением одного человека, который стал троечником. При этом хорошистов и отличников стало поровну. Сколько учеников могло быть в школе?
Задачу решили:
69
всего попыток:
71
Точка М - середина стороны АВ треугольника АВС. На отрезке СМ выбраны точки P и Q так,что СQ=2*РМ. Оказалось, что угол АРМ = 90. Найдите BQ/AC.
Задачу решили:
68
всего попыток:
69
На стороне ВС трегольника АВС отмечены точки M и N, что CM = MN = NB. К стороне ВС в точке N построен перпендикуляр, пересекающий АВ в точке К. Оказалось что площадь треугольника АМК в 4.5 раза меньше площади исходного треугольника. Найти отношение AB/AC
Задачу решили:
65
всего попыток:
77
Дан выпуклый четырехугольник АВСD. Серединные перпендикуляры к диагоналям BD и AC пересекают AD в точках X и Y соответственно, причем X лежит между А и Y. Оказалось что прямые BX и CY параллельны. Найти угол (в градусах) между BD и АС.
Задачу решили:
79
всего попыток:
88
Отрезки АС и ВD пересекаются в точке М, причем АВ = СD и угол АСD - прямой. Найдите минимальное значение отношения MD/MA.
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|