Лента событий:
Lec добавил комментарий к задаче "Десятичная запись квадрата" (Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
25
всего попыток:
63
Сколько целых значений может иметь длина биссектрисы AD треугольника ABC, если |AB|=45 и |AC|=29 ?
Задачу решили:
22
всего попыток:
25
У прямоугольного листа ABCD угол BAD загибается так, что его вершина А попадает на сторону листа ВС. При этом получаются три прямоугольных треугольника, площади которых образуют арифметическую прогрессию. Если площадь наименьшего из треугольников равна 3, то чему равна площадь наибольшего из них? Ответ округлите до двух знаков после запятой.
Задачу решили:
24
всего попыток:
31
При сгибе прямоугольного листа бумаги с целочисленными сторонами, одна из которой равна 7, были совмещены две противоположные вершины. Найти длину линии сгиба при условии равенства её рациональному числу.
Задачу решили:
28
всего попыток:
30
Периметр прямоугольного треугольника АВС (АВ - гипотенуза) равен 90. Длина катета АС больше 20. Окружность с радиусом 10, центр которой находится на катете ВС, касается прямых АВ и АС. Найти площадь треугольника АВС.
Задачу решили:
30
всего попыток:
34
Биссектриса острого угла A равнобедренной трапеции ABCD пересекает её основание в точке K. В этой трапеции расположены две равные окружности радиуса 2, касающиеся её сторон и друг друга, причем K – одна из точек касания. Найдите площадь трапеции ABCD.
Задачу решили:
24
всего попыток:
35
Прямоугольник и квадрат, у которых совпадает одна из диагоналей, расположены так, что прямоугольник делит своими двумя параллельными сторонами две параллельные стороны квадрата в отношении 1:3. Найти площадь квадрата, если известно, что она является целым числом, площадь прямоугольника равна 14.
Задачу решили:
25
всего попыток:
29
В квадрате ABCD точка М лежит на стороне ВС, а точка N - на стороне АВ. Прямые АМ и DN пересекаются в точке О. Найти площадь квадрата, если известно, что |DN|=4, |AM|=3, а косинус угла AOD=0.6.
Задачу решили:
21
всего попыток:
28
Четыре круга с различными целочисленными диаметрами D, D1, D2, D3 таковы, что D=D1 + D2 + D3. Для площадей этих кругов справедливо равенство S=2*(S1 + S2 + S3). Найти наименьший D.
Задачу решили:
21
всего попыток:
28
В день своего 18-летия Таня нарисовала выпуклый 18-угольник, каждый угол которого кратен 18 градусам.
Задачу решили:
27
всего попыток:
28
В треугольнике АВС проведена биссектриса СL. Найдите значение выражения 1/|АС| + 1/|ВС|, если |СL| = 5, cos AСB = 1/8 и cos ALС = 1/7.
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|