Лента событий:
Lec добавил комментарий к задаче "Десятичная запись квадрата" (Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
19
всего попыток:
44
Расмотрим простое число p=1000000007=109+7 и все целые числа n, которые не делятся на p. Какие значения, не превосходящие 14, может принимать остаток от деления n2 на p? Введите ответ в виде строки из 14-и НУЛЕЙ и ЕДИНИЦ, где на k-м месте (слева) стоит ЕДИНИЦА, если остаток от деления n2 на p может принимать значение k, а в противном случае - НОЛЬ.
Задачу решили:
12
всего попыток:
21
Множество A={a,b,c} содержит 3 элемента. Его запись занимает 7 символов. Множество B это множество всех подмножеств множества A. Его запись: {{},{a},{b},{a,b},{c},{a,c},{b,c},{a,b,c}} занимает 42 символа. Множество C это множество всех подмножеств множества B. Сколько символов занимает запись множества C?
Задачу решили:
9
всего попыток:
16
Первые сто простых чисел написаны мелом на ста досках (по одному числу на каждой доске). Разрешена такая операция: если на каких-то двух досках написаны числа a и b, a≤b, то можно их заменить на числа 2a и b-a. Какое максимальное количество чисел на досках можно обнулить посредством таких операций?
Задачу решили:
20
всего попыток:
25
Натуральное число делится без остатка на 4, на 9, на 49, и имеет 45 делителей, среди которых 1 и само это число. Найдите все такие натуральные числа. В ответе укажите их сумму.
Задачу решили:
8
всего попыток:
13
Найдите количество 26-значных квадратных чисел, запись которых в десятичной системе счисления, состоит из двух соседних 13-значных чисел написанных одно за другим: большее слева, меньшее справа.
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|