Лента событий:
vochfid добавил комментарий к задаче "Десятичная запись квадрата" (Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
179
всего попыток:
282
На углу дома, размеры которого - 6 метров на 4 метра, привязана собака. Длина привязи - 10 метров. Какова площадь участка доступного собаке? Число ∏ (Пи) округлить до 3.
Задачу решили:
41
всего попыток:
169
Саша задумал 20 натуральных чисел и вычислил все возможные произведения, составленные из пар задуманных чисел. Получилось 190 произведений. Найдите наибольшее число произведений гарантированно заканчивающихся на одну и ту же цифру.
(Хотелось бы иметь математическое решение, а не программу.)
Задачу решили:
80
всего попыток:
117
После войны один из полков солдат построили на площади в форме прямоугольника. И 1% от этих солдат были награждены за отвагу. Причем, солдаты, получившие награды, точно встречаются в 30% рядов и в 40% колонн. Какое наименьшее количество солдат может быть в этом полку?
Задачу решили:
23
всего попыток:
252
На стороне BC выпуклого четырёхугольника произвольным образом выбрана точка E. Окружности, вписанные в треугольники ABE, CDE, AED, имеют общую касательную. Найдите длину стороны AD, если AB=32, BC=36, CD=48. В ответе введите сумму минимального и максимального возможных значений.
Задачу решили:
65
всего попыток:
77
Дан выпуклый четырехугольник АВСD. Серединные перпендикуляры к диагоналям BD и AC пересекают AD в точках X и Y соответственно, причем X лежит между А и Y. Оказалось что прямые BX и CY параллельны. Найти угол (в градусах) между BD и АС.
Задачу решили:
64
всего попыток:
66
Серединные перпендикуляры к диагоналям BD и АС вписанного четырехугольника АВСD пересекают сторону AD в точках X и Y соответственно. Пусть М середина ВС и расстояние от М до прямой ВХ = k, а расстояние до прямой СY равно u. Найти отношение k/u.
Задачу решили:
56
всего попыток:
277
Десять школьников стоят в ряд. Каждую минуту какие-то два соседних школьника меняются местами. Через некоторое время выяснилось, что каждый из школьников успел побывать на первом и последнем месте. Найдите минимальное число минут которое могло пройти.
Задачу решили:
38
всего попыток:
187
Продолжения сторон (AD и BC) и (AB и CD) выпуклого четырехугольника ABCD пересекаются в точках E и F соответственно. Для определенности будем считать, что E и F лежат по одну сторону от прямой AC. (см.рис.) Внутри диагонали AC произвольным образом выбрана точка G. Прямые BG || DH || EI || FJ параллельны друг другу, а точки H, I, J являются точками пересечения соответствующих прямых с прямой AC так, что |DH|=a, |EI|=b, |FJ|=c. Найдите длину отрезка |BG|, если a=9, b=3, c=6.
Задачу решили:
33
всего попыток:
63
Для двух натуральных x и k, рассмотрим два числа: x и (x+k). Определим функцию f(k)=i, где i - количество таких чисел xi, что и xi, и xi+k являются точными квадратами некоторых натуральных чисел. Например f(1)=0; f(3)=1 {x=1}; f(21)=2 {x1=4, x2=100} и т.д. В интервале 1<k<212 найдите все такие k, что f(k)=15. В ответе необходимо указать сумму всех таких k.
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|