Лента событий:
vochfid добавил комментарий к задаче "Десятичная запись квадрата" (Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
40
всего попыток:
62
Пусть задана строка состоящая из 2m неотрицательных целых чисел, удовлетворяющих условию: 1) числа в строке не могут возрастать; 2) каждое число не превосходит m; 3) нулей может быть любое количество, не превосходящее 2m, остальные числа могут иметь только одну пару. Пример для m=4: Найти количество таких строк при m=10.
Задачу решили:
36
всего попыток:
266
В стране 1000 городов, некоторые пары городов соединены дорогами. Оказалось, что один из концов любой дороги является городом, из которого выходит не более 10 дорог. Какое наибольшее количество дорог может быть в этой стране?
Задачу решили:
62
всего попыток:
89
Назовём шестизначное число эльфийским, если модуль разности суммы первых трёх цифр и последних трёх цифр делится на 11. Сколько существует эльфийских шестизначных чисел?
Задачу решили:
45
всего попыток:
285
Вася старается раскрасить клетки квадрата 5х5 так, чтобы в любом его квадрате 3х3 было ровно 4 закрашенных клетки. После успешной раскраски он считает сколько клеток осталось не закрашенными. Сколько различных значений может получить Вася? В качестве ответа введите сумму полученных значений.
Задачу решили:
60
всего попыток:
134
Стоимость билета в кино составляет 50 рублей. В очереди в кассу стоит 2012 зрителей. 1006 из них имеет только купюры по 50 рублей,
Задачу решили:
61
всего попыток:
94
Так называемая кубковая система определения победителя из восьми спортсменов состоит в разбиение игроков на пары с помощью жеребьевки. Четыре матча определяют четырех победителей, которые участвуют во втором туре; третий тур соревнования является финалом. Победитель финального матча получает первый приз, а его соперник получает второй приз. Будем считать, что каждый игрок имеет определенную силу (подобно тому, как каждый предмет имеет определенный вес) и что более сильный игрок всегда выигрывает у более слабого (подобно тому, как более тяжелый предмет всегда перевешивает более легкий, если они помещены на разные чаши весов). В таких предположениях описанный выше процесс годен для определения чемпиона, т.к. победитель действительно будет сильнее всех своих соперников; однако второе место вовсе не всегда будет занято вторым по силе игроком. Какова вероятность того, что второй участник финального матча в самом деле достоин второго приза?
Задачу решили:
45
всего попыток:
153
На доске 100×100 расставлены числа 1, 2 и 3 так, что в каждом прямоугольнике 1×3 встречаются все три числа, а в углах стоят единицы. Если эту доску раскрасить в шахматном порядке, то какое максимальное количество белых клеток будут единицами?
Задачу решили:
101
всего попыток:
122
Среди чисел, записываемых только нулями и единицами, найдите наименьшее кратное 14.
Задачу решили:
50
всего попыток:
85
Среди 10-элементных подмножеств множества A ={1, 2, ..., 30} найдите количество тех, в которых разность любых двух элементов не меньше 3.
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|