img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
отражение
Лента событий: vochfid добавил комментарий к задаче "Десятичная запись квадрата" (Математика):
Рисунок
Rss

Задачи: Математика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 29
всего попыток: 32
Задача опубликована: 15.05.24 08:00
Прислал: solomon img
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Лучшее решение: Sam777e

Найти площадь трапеции с основаниями 9 и 4, боковыми сторонами 3 и 4.

Задачу решили: 13
всего попыток: 15
Задача опубликована: 01.06.24 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Лучшее решение: avilow (Николай Авилов)

На какое наименьшее число остроугольных треугольников можно разрезать прямоугольник?

Задачу решили: 10
всего попыток: 22
Задача опубликована: 12.06.24 08:00
Прислал: solomon img
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Лучшее решение: Lec

Имеются двусторонняя линейка и окружность, радиус которой больше ширины линейки. За одну операцию можно либо провести прямую, либо две параллельные прямые, используя обе стороны линейки. При этом если заданы две точки, то не разрешается провести за одну операцию такие две параллельные прямые, что одна из них проходила через одну из них, а другая – через другую. За какое минимальное количество операций можно найти центр окружности?

Задачу решили: 11
всего попыток: 35
Задача опубликована: 19.06.24 08:00
Прислал: avilow img
Источник: По мотивам задачи 2664
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Лучшее решение: Vkorsukov

Имеются двусторонняя линейка и окружность, радиус которой больше ширины линейки. За одну операцию можно либо провести прямую, либо две параллельные прямые, используя обе стороны линейки. За какое минимальное количество операций можно найти центр окружности?

Задачу решили: 21
всего попыток: 23
Задача опубликована: 17.07.24 08:00
Прислал: solomon img
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Лучшее решение: Sam777e

В треугольнике один из углов на 120° больше другого. Найти отношение длины высоты к длине биссектрисы, опущенных из вершины третьего угла.

Задачу решили: 22
всего попыток: 30
Задача опубликована: 22.07.24 08:00
Прислал: solomon img
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Лучшее решение: MMM (MMM MMM)

Чевиана из вершины прямого угла треугольника АВС(угол С-прямой) СК равен катету АС и делит биссектрису из вершины В в точке пересечения пополам. Найти угол В в градусах.

Задачу решили: 9
всего попыток: 13
Задача опубликована: 29.07.24 08:00
Прислал: avilow img
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Лучшее решение: Sam777e

В бумажном квадрате 7х7 на рисунке вырезан меньший квадрат так, что его вершины находятся в узлах решетки.

Дырявый квадрат

Разрежьте эту фигуру на несколько частей и переложите их так, чтобы получился квадрат 7х7 с квадратной дырой в центре, причем стороны квадратной дыры были параллельны сторонам исходного квадрата. Разрезы можно делать любой формы. В ответе укажите наименьшее число частей разрезания.

Задачу решили: 22
всего попыток: 23
Задача опубликована: 05.08.24 08:00
Прислал: solomon img
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Темы: алгебраimg
Лучшее решение: user033 (Олег Сopoкин)

(√15 + √21 + √25 + √35)/(√3 + √7 + √20)=(√a + √b)/2, где a и b - натуральные числа. Найдите их сумму.

Задачу решили: 21
всего попыток: 28
Задача опубликована: 07.08.24 08:00
Прислал: mikev img
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Лучшее решение: TALMON (Тальмон Сильвер)

Взаимно простые целые числа x, y и z удовлетворяют следующим условиям:

x2+y2+z2=2xy+2yz+2zx

0<z<y<x<12345

Найти наибольшее значение x.

Задачу решили: 12
всего попыток: 14
Задача опубликована: 28.08.24 08:00
Прислал: DOMASH img
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Лучшее решение: makar243 (Сулейман Макаренко)

В целочисленном параллелограмме пересечения биссектрис внутренних углов определяют вершины четырёхугольника, ни одна точка которого не находится вне параллелограмма. Сколько существует таких параллелограммов, если известно, что одна из его сторон равна 135, а углы кратны 9 градусам?

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.