Лента событий:
vochfid добавил комментарий к задаче "Десятичная запись квадрата" (Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
257
всего попыток:
410
Путешественник заблудился на острове, где живут два племени: Правдивые (всегда говорят правду) и Лживые (всегда лгут). Выглядят они одинаково, говорят на одном языке и свободно передвигаются по всему острову. Из леса выходит туземец, у которого путешественнику нужно узнать, на чьей территории он сейчас находится. Каким наименьшим числом вопросов сможет обойтись путешественник?
Задачу решили:
110
всего попыток:
160
Сколькими способами можно расставить в ряд все десять цифр от 0 до 9 включительно так, чтобы сумма любых трёх из них, идущих подряд, не превышала 12?
Задачу решили:
113
всего попыток:
326
Найдите пропущенное число: 10, 11, 12, 13, 14, 20, 22, ?, 1010.
Задачу решили:
176
всего попыток:
324
Найдите количество различных трёхзначных чисел, сумма цифр которых делится на 13.
Задачу решили:
16
всего попыток:
368
Вернувшись из своего путешествия на Луну, Незнайка решил написать книгу о своих приключениях. Каждый вечер он читал новую главу из неё своим друзьям и однажды прочитал им следующие невероятные события: "Однажды утром Спрутс бросил меня в огромную пещеру с абсолютно гладкими гранитными стенами, которая представляла собой точный куб размерами 100x100x100 метров. Я стоял на краю небольшой ниши, нижний край которой был ровно в центре вертикальной грани этого куба. Выход на волю (его нижний край) был ровно в центре противоположной от меня грани. Присмотревшись, я увидел канат висящий от выхода до пола. Если бы я как-то спустился на пол пещеры, я легко выбрался бы взобравшись по нему. Однако я был на высоте 50 метров от пола и не мог спрыгнуть. К счастью, у меня был подарок Миги: чудесный моток точно такого же каната. Сколько каната из него ни вытягивай, можно вытянуть еще столько же и так далее. Правда он был немного неудобный, в сечении это был не круг, а квадрат со стороной 2 см. Достаточно толстый, но очень гибкий и скользкий. Как я ни старался, я так и не смог закрепить канат, чтобы спуститься по нему вниз. Исследовав всю небольшую нишу, я нашел ножницы, которыми можно было перерезать канат. Выхода из ситуации не было, однако поразмыслив я все же смог выбраться!" "Враньё от первого до последнего слова!" — засмеялись все находившиеся в комнате коротышки, однако профессор Звёздочкин сказал, что при этих условиях у Незнайки действительно был один способ, чтобы выбраться из пещеры, и Знайка с ним согласился. Какое наименьшее количество метров каната нужно было вытянуть Незнайке из мотка, чтобы выбраться? (Считаем, что размеры Незнайки точечные, любой прыжок на любую высоту вверх или вниз смертелен).
Задачу решили:
38
всего попыток:
377
На рисунке ноль имеет 2 квадратика касающихся квадратиков следующей цифры – единицы. Единица имеет 3 квадратика касающихся квадратиков соседних цифр. Цифра 2 имеет 4 квадратика касающихся квадратиков соседних цифр и т.д. Девятка имеет 4 квадратика касающихся квадратиков цифры 8. Если значение каждой цифры умножить на число квадратиков касающихся квадратиков других цифр и сложить эти произведения, получим: 0·2+1·3+2·4+3·6+4·7+5·8+6·5+7·6+8·9+9·4=277. Переставить цифры не переворачивая их так, чтобы получить максимальную сумму. Ответом является полученная сумма. Число может начинаться с нуля, накладывать цифры друг на друга и выдвигать по вертикали нельзя.
Задачу решили:
93
всего попыток:
374
В компании ровно у одного — один друг, ровно у одного — два друга и т.д. до пяти. Какое наименьшее число людей может быть в такой компании?
Задачу решили:
46
всего попыток:
72
Тридцать два натуральных числа от 1 до 32 можно разместить по кругу так, что любые два соседних числа в сумме дают полный квадрат. Записав затем все числа в ряд друг за другом без пробелов, начиная с числа 1, получим 55-значное число. Найдите наибольшее такое число.
Задачу решили:
108
всего попыток:
166
Число 2003/(2^2003) записано в виде конечной десятичной дроби. Какая цифра у него стоит на четвертом месте с конца?
Задачу решили:
130
всего попыток:
156
В мешке 100 котов — черных, белых и серых. Количество чёрных котов больше, чем удвоенное количество белых; утроенное количество белых котов больше, чем учетверённое количество серых; утроенное количество серых котов больше количества чёрных. Сколько котов черного цвета в мешке?
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|