img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
отражение
Лента событий: Lec добавил комментарий к задаче "Десятичная запись квадрата" (Математика):
Рисунок
Rss

Задачи: Математика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 92
всего попыток: 160
Задача опубликована: 14.04.14 08:00
Прислал: nauru img
Источник: Кубок Колмогорова
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Лучшее решение: Sam777e

У торговцев Пети и Васи было по 30 пирожков. Они начали продавать их по 30 рублей. Если у одного из них покупают пирожок, другой немедленно снижает цену на свои пирожки на один рубль (пирожки продаются только по одному, и такого, чтобы они продавали по пирожку одновременно, не бывает). Сколько денег выручат в сумме Петя и Вася, когда продадут все свои пирожки?

Задачу решили: 43
всего попыток: 180
Задача опубликована: 28.07.14 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Лучшее решение: zmerch

На столе лежит 100 монет орлами вверх. За одно действие вы можете перевернуть ровно 93 монетки. Какое наименьшее количество действий нужно совершить, чтобы все монетки лежали вверх решками.

Задачу решили: 67
всего попыток: 110
Задача опубликована: 08.09.14 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Лучшее решение: Sam777e

Найдите количество 7-значных чисел, состоящих из цифр 1, 2 и 3 и имеющих сумму цифр равную 10.

Задачу решили: 38
всего попыток: 41
Задача опубликована: 22.10.14 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Темы: логикаimg

Два игрока по очереди берут одну из девяти плиток (карт, фишек), открыто пронумерованных от 1 до 9. Побеждает тот, кто первым соберет три плитки с общей суммой 15.
Доказать, что при правильной игре обоих игроков игра завершится ничьей.

Задачу решили: 47
всего попыток: 94
Задача опубликована: 19.12.14 08:00
Прислал: levvol img
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Темы: логикаimg

Каждый Флибс является Флобсом. Половина всех Флобсов являются Флибсами, и половина всех Флубсов является Флобсами.

Найдено 30 Флубсов и 20 Флибсов, среди которых ни один Флубс не является Флибсом. Как много среди найденных Флобсов не являются ни Флибсами, ни Флубсами?

Задачу решили: 37
всего попыток: 74
Задача опубликована: 19.01.15 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Лучшее решение: TALMON (Тальмон Сильвер)

Известно, что a1 < a2 < ... < a2014 простые числа и a12+a22+...+a20142 делится на 2015. Найти минимально возможное a1.

Задачу решили: 81
всего попыток: 126
Задача опубликована: 06.02.15 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Лучшее решение: Sam777e

m и n - целые числа такие, что m2=n2+8n-3. Найдите сумму всех таких возможных n.

Задачу решили: 62
всего попыток: 140
Задача опубликована: 16.02.15 08:00
Прислал: admin img
Источник: http://naked-science.ru/article/psy/yaponskii...
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Темы: логикаimg
Лучшее решение: levvol

На одном берегу реки собралась компания: отец с двумя сыновьями, мать с двумя дочерьми и шериф с заключенным. Все они хотя переплать на другой берег. При этом:

1. Детишки не могут одни находиться на плоту.

2. Шериф не может оставлять заключенного с остальными.

3. Мужчина не может оставлять своих двух сыновей одних с женщиной, а женщина своих дочерей с мужчиной.

4. Плот не может плыть сам по себе, а на плоту могут находиться не более 2 человек.

Какое минимальное количество раз плот причалит к противоположному берегу, чтобы перевезти всю компанию.

 
Задачу решили: 49
всего попыток: 99
Задача опубликована: 30.03.15 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Лучшее решение: Sam777e

Найти сумму всех возможных значений k таких, что

2k+3m+1=6n, все k, m и n - целые.

Задачу решили: 52
всего попыток: 127
Задача опубликована: 15.04.15 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Лучшее решение: kvanted

Пусть множество S такое, что:

1) 2 принадлежит S

2) если n принадлежит S, то и n+5 принадлежит S

3) если n принадлежит S, то и 3n принадлежит S.

Найдите максимальное n из S меньшее 2009.

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.