Лента событий:
vochfid добавил комментарий к задаче "Десятичная запись квадрата" (Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
37
всего попыток:
43
В выражении DONALD+GERALD = ROBERT каждой букве соответствует одна цифра от 0 до 9. Известно, что D=5. В качестве ответа запишите все цифры буквами в порядке от 0 до 9.
Задачу решили:
27
всего попыток:
30
Имеется 14 кубиков: два кубика с числом 1, два кубика с числом 2, два кубика с числом 3 и так далее, два кубика с числом 7. Расположите эти кубики в ряд так, чтобы между кубиками с числом 1 был ровно 1 кубик, между кубиками с числом 2 было ровно 2 кубика, и так далее, между кубиками с числом 7 было ровно 7 кубиков. Построенное решение определяет 14-значное число, записанное цифрами от 1 до 7. Поскольку кубики можно расставить несколькими способами, то в ответе укажите наименьшее 14-значное число, соответствующее полученному решению. Для примера, на рисунке показано решение для 8 кубиков с числами от 1 до 4 и число 23421314, соответствующее этому решению.
Задачу решили:
24
всего попыток:
78
Найдите в порядке возрастания 2020-е число среди всех натуральных чисел, сумма цифр которых равна 2020.
Задачу решили:
17
всего попыток:
68
В мусульманском календаре их было 11, в григорианском календаре 13. Каким будет 14-ый год?
Задачу решили:
39
всего попыток:
54
Есть мешок сахара, чашечные весы и гирька в 1 г. За какое минимальное число взвешений можно взвесить 1 кг сахара?
Задачу решили:
29
всего попыток:
70
Однажды на DIOFANT.RU было опубликовано 5 задач. Среди пользователей сайта не оказалось двух, кто решил одни и те же задачи. Если исключить любую задачу, то выбрав любого пользователя, можно найти и другого, решившего из оставшихся четырёх задач те же, что и он. Сколько пользователей решало задачи?
Задачу решили:
18
всего попыток:
28
Восемь пронумерованных шкатулок с ожерельями внутри имеют различные веса и составляют числовую последовательность фибоначчи. Есть подозрение, что одну из шкатулок опустошили. За какое наименьшее количество взвешиваний на чашах весов без гирь можно установить эту шкатулку или снять подозрение.
Задачу решили:
24
всего попыток:
51
Натуральные числа от 1 до n расставлены по кругу (без повторов) так, что сумма любых двух соседних чисел равна точному квадрату. При каком наименьшем значении n такая расстановка возможна? Для примера, на рисунке приведена расстановка чисел при n=15, в которой сумма любых двух соседних чисел является квадратным числом, кроме лишь одной, выделенной красным отрезком.
Задачу решили:
20
всего попыток:
55
"Докажем", что все лошади одного цвета. Укажите номер первого ошибочного пункта в следующем изложении: Докажем по индукции, что для любого натурального числа n выполняется следующее утверждение: Любая группа из n лошадей состоит из лошадей одного цвета. 1. Для n=1 утверждение верно. Действительно, любая группа из ОДНОЙ лошади состоит из лошадей одного цвета. Покажем, что из выполнимости утверждения для какого-то n следует его выполнимость для n+1. 2. Пусть утверждение верно для какого-то n. Рассмотрим любую группу из n+1 лошадей. 3. Удалим из этой группы одну лошадь. Согласно предположению индукции, все оставшиеся n лошадей одного цвета. 4. Вернём удалённую лошадь, а вместо неё удалим другую лошадь. 5. Опять все оставшиеся n лошадей одного цвета. 6. Следовательно, все n+1 лошадь одного цвета. 7. Теорема доказана!
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|