Лента событий:
vochfid добавил комментарий к задаче "Десятичная запись квадрата" (Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
34
всего попыток:
38
Число 169=132=122+52. Но интересно, что 1692 - тоже равно сумме квадратов двух натуральных взаимно простых чисел. Найдите наибольшее из них.
Задачу решили:
11
всего попыток:
33
На иллюстрации изображены три замкнутые непересекающиеся ломаные на квадратной сетке. Каждая из них помещается в минимальном квадрате (на этой же квадратной сетке) размера 3 на 3. Сколько всего таких ломаных?
Задачу решили:
16
всего попыток:
89
На иллюстрации изображены три замкнутые непересекающиеся ломаные на квадратной сетке. Каждая из них помещается в минимальном квадрате (на этой же квадратной сетке) размера 3 на 3. Сколько всего таких попарно неконгруэнтных ломаных?
Задачу решили:
20
всего попыток:
23
Олимпиада для школьников проходила в двух залах. Ни в одном из залов не было трех тёзок. У 100 учеников было двое тёзок в другом зале. У 144 учеников было хотя бы по одному тёзке в каждом зале. У скольких учеников было ровно по одному тёзке в каждом зале?
Задачу решили:
25
всего попыток:
25
В пятизначном числе зачеркнули одну цифру и сложили получившееся число с исходным. В результате получилось 54321. Найдите исходное число.
Задачу решили:
13
всего попыток:
15
На какое наименьшее число остроугольных треугольников можно разрезать прямоугольник?
Задачу решили:
22
всего попыток:
25
По кругу стоят 7 диванов, на них сидит всего 50 человек, на каждом диване - хотя бы один человек. Каждый сказал:"На следующем по часовой стрелке диване ровно половина людей выше меня, а ровно половина - ниже." Какое наибольшее число людей могло сказать правду?
Задачу решили:
9
всего попыток:
13
В бумажном квадрате 7х7 на рисунке вырезан меньший квадрат так, что его вершины находятся в узлах решетки. Разрежьте эту фигуру на несколько частей и переложите их так, чтобы получился квадрат 7х7 с квадратной дырой в центре, причем стороны квадратной дыры были параллельны сторонам исходного квадрата. Разрезы можно делать любой формы. В ответе укажите наименьшее число частей разрезания.
Задачу решили:
21
всего попыток:
28
Взаимно простые целые числа x, y и z удовлетворяют следующим условиям: x2+y2+z2=2xy+2yz+2zx 0<z<y<x<12345 Найти наибольшее значение x.
Задачу решили:
20
всего попыток:
28
Девочка пронумеровала черные клетки шахматной доски 8х8 числами от 1 до 32 в натуральном порядке так, как показано на рисунке. Мальчик собирается пронумеровать числами от 1 до 32 белые клетки этой доски так, чтобы суммы четырех чисел в любом квадрате 2х2 оказались равными. Сколькими различными способами мальчик сможет это сделать? В ответе укажите сумму всех чисел, расположенных на «белой» диагонали всех возможных решений (эти клетки отмечены звездочками).
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|