Лента событий:
fortpost решил задачу "Три числа и степени" (Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
2965
всего попыток:
4685
Прах Диофанта гробница покоит: дивись ей — и камень Мудрым искусством его скажет усопшего век. Волей богов шестую часть жизни он прожил ребенком И половину шестой встретил с пушком на щеках. Только минула седьмая, с подругой он обручился; С нею пять лет проведя, сына дождался мудрец. Только полжизни отцовской возлюбленный сын его прожил, Отнят он был у отца ранней могилой своей. Дважды два года родитель оплакивал тяжкое горе, Тут и увидел предел жизни печальной своей. (Пер. С.Н. Боброва) Сколько лет прожил Диофант?
Задачу решили:
577
всего попыток:
658
По аллее длиной 240 м навстречу друг другу идут двое детей. Скорость мальчика 1,5 м/с, а его младшей сестрёнки — 1 м/с. Между ними от одного к другому, не останавливаясь и заливаясь радостным лаем, бегает их собака со скоростью 5 м/с. Сколько метров пробежит собака прежде, чем дети встретятся?
Задачу решили:
222
всего попыток:
330
Бригада трактористов должна была вспахать два поля, одно из которых в два раза больше другого. С утра бригадир отправил всю бригаду на большое поле. В середине рабочего дня он решил перераспределить силы: половину тракторов он оставил на большом поле, которое было вспахано как раз к концу рабочего дня. Другую половину бригадир отправил на маленькое поле, на котором в конце дня остался небольшой невспаханный участок. На другой день бригадир направил туда один трактор, и в течение рабочего дня поле было полностью вспахано. Сколько в бригаде тракторов?
(Авторство аналогичной задачи про косарей приписывается Льву Толстому. Однако некоторые источники утверждают, что на самом деле её придумал некий студент Петров.)
Задачу решили:
224
всего попыток:
439
Пассажир метро бежит вниз по эскалатору, идущему вниз, и считает ступеньки. Пробежав весь эскалатор, он насчитал 30 ступенек. Проделав то же самое на эскалаторе, идущем вверх, он насчитал 90 ступенек. Сколько ступенек на неподвижном эскалаторе?
Задачу решили:
113
всего попыток:
326
Найдите пропущенное число: 10, 11, 12, 13, 14, 20, 22, ?, 1010.
Задачу решили:
16
всего попыток:
368
Вернувшись из своего путешествия на Луну, Незнайка решил написать книгу о своих приключениях. Каждый вечер он читал новую главу из неё своим друзьям и однажды прочитал им следующие невероятные события: "Однажды утром Спрутс бросил меня в огромную пещеру с абсолютно гладкими гранитными стенами, которая представляла собой точный куб размерами 100x100x100 метров. Я стоял на краю небольшой ниши, нижний край которой был ровно в центре вертикальной грани этого куба. Выход на волю (его нижний край) был ровно в центре противоположной от меня грани. Присмотревшись, я увидел канат висящий от выхода до пола. Если бы я как-то спустился на пол пещеры, я легко выбрался бы взобравшись по нему. Однако я был на высоте 50 метров от пола и не мог спрыгнуть. К счастью, у меня был подарок Миги: чудесный моток точно такого же каната. Сколько каната из него ни вытягивай, можно вытянуть еще столько же и так далее. Правда он был немного неудобный, в сечении это был не круг, а квадрат со стороной 2 см. Достаточно толстый, но очень гибкий и скользкий. Как я ни старался, я так и не смог закрепить канат, чтобы спуститься по нему вниз. Исследовав всю небольшую нишу, я нашел ножницы, которыми можно было перерезать канат. Выхода из ситуации не было, однако поразмыслив я все же смог выбраться!" "Враньё от первого до последнего слова!" — засмеялись все находившиеся в комнате коротышки, однако профессор Звёздочкин сказал, что при этих условиях у Незнайки действительно был один способ, чтобы выбраться из пещеры, и Знайка с ним согласился. Какое наименьшее количество метров каната нужно было вытянуть Незнайке из мотка, чтобы выбраться? (Считаем, что размеры Незнайки точечные, любой прыжок на любую высоту вверх или вниз смертелен).
Задачу решили:
111
всего попыток:
171
На доске написаны 13 чисел: 0, 1, 2, ..., 12. Среди них выбирают два каких-то числа a и b, стирают их, а вместо них пишут одно число ab+a+b. Описанную процедуру повторяют 12 раз. Найдите наибольшее число, которое может остаться на доске.
Задачу решили:
185
всего попыток:
244
Сумма двух вещественных чисел a и b равна 5, при этом значение выражения a+b+a2b+b2a равно 24. Найти сумму кубов чисел a и b.
Задачу решили:
146
всего попыток:
176
Найти наибольшее число R, при котором система уравнений: x-4y=1 имеет решение в целых числах x, y.
Задачу решили:
169
всего попыток:
194
Дан ряд чисел: 1, 2, 3, 4, 5, 6, 7, 8, 9. Какую цифру нужно выбросить из данного ряда, чтобы наименьшее общее кратное оставшихся чисел было самым маленьким из возможных?
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|