Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
40
всего попыток:
261
Плоский граф содержит 122 вершины, все его грани шестиугольники. Граф содержит замкнутый путь, идущий по ребрам, проходящий через каждую вершину только один раз. Такой граф называется гамильтоновым. Найти число граней, которые имеет данный граф.
Задачу решили:
57
всего попыток:
94
Если шахматному коню запретить дважды вставать на одно и тоже поле, то можно найти такое начальное положение коня, что через три хода он будет запатован (у него не будет возможных ходов). Например, поместим коня на поле f2, тогда после ходов 1.Ke4 2.Kg3 3.Kh1 - конь запатован. А можно ли запатовать коня на бесконечной шахматной доске? В ответе укажите минимальное достаточное количество ходов для достижения цели.
Задачу решили:
56
всего попыток:
277
Десять школьников стоят в ряд. Каждую минуту какие-то два соседних школьника меняются местами. Через некоторое время выяснилось, что каждый из школьников успел побывать на первом и последнем месте. Найдите минимальное число минут которое могло пройти.
Задачу решили:
108
всего попыток:
229
В отряде восемь бойцов. Каждую ночь трое уходят в разведку, причём, никакие двое бойцов не должны ходить в разведку вместе дважды. Найдите максимальное возможное число ночей, в которые отряд может посылать разведчиков.
Задачу решили:
45
всего попыток:
302
Петя с Васей изучили правила игры в шахматы и стали часто играть между собой. В одной из сыгранных партий у них случилась позиция, в которой присутствовали только короли, ладьи и слоны. А какое максимальное общее количество фигур могло быть на доске в этот момент.
Задачу решили:
40
всего попыток:
62
Пусть задана строка состоящая из 2m неотрицательных целых чисел, удовлетворяющих условию: 1) числа в строке не могут возрастать; 2) каждое число не превосходит m; 3) нулей может быть любое количество, не превосходящее 2m, остальные числа могут иметь только одну пару. Пример для m=4: Найти количество таких строк при m=10.
Задачу решили:
36
всего попыток:
266
В стране 1000 городов, некоторые пары городов соединены дорогами. Оказалось, что один из концов любой дороги является городом, из которого выходит не более 10 дорог. Какое наибольшее количество дорог может быть в этой стране?
Задачу решили:
45
всего попыток:
285
Вася старается раскрасить клетки квадрата 5х5 так, чтобы в любом его квадрате 3х3 было ровно 4 закрашенных клетки. После успешной раскраски он считает сколько клеток осталось не закрашенными. Сколько различных значений может получить Вася? В качестве ответа введите сумму полученных значений.
Задачу решили:
60
всего попыток:
134
Стоимость билета в кино составляет 50 рублей. В очереди в кассу стоит 2012 зрителей. 1006 из них имеет только купюры по 50 рублей,
Задачу решили:
45
всего попыток:
153
На доске 100×100 расставлены числа 1, 2 и 3 так, что в каждом прямоугольнике 1×3 встречаются все три числа, а в углах стоят единицы. Если эту доску раскрасить в шахматном порядке, то какое максимальное количество белых клеток будут единицами?
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|