Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
70
всего попыток:
119
В прямоугольном треугольнике ABC с прямым углом при вершине А, биссектриса прямого угла пересекает гипотенузу BC в точке D, так что DAB = 45°. Если CD = 1 и BD = AD + 1, найти длину AD.
Ответ представить в виде целого числа, умножив результат на 1000 и округлив до ближайшего целого.
Задачу решили:
46
всего попыток:
60
В остроугольном треугольнике ABC угол которого , внутри отрезков AB и AC можно выбрать две точки D и E так, что BD=CE=BC. Найдите длину отрезка DE, если квадрат расстояния между центрами вписанной и описанной окружностей треугольника ABC .
Задачу решили:
57
всего попыток:
94
Если шахматному коню запретить дважды вставать на одно и тоже поле, то можно найти такое начальное положение коня, что через три хода он будет запатован (у него не будет возможных ходов). Например, поместим коня на поле f2, тогда после ходов 1.Ke4 2.Kg3 3.Kh1 - конь запатован. А можно ли запатовать коня на бесконечной шахматной доске? В ответе укажите минимальное достаточное количество ходов для достижения цели.
Задачу решили:
179
всего попыток:
282
На углу дома, размеры которого - 6 метров на 4 метра, привязана собака. Длина привязи - 10 метров. Какова площадь участка доступного собаке? Число ∏ (Пи) округлить до 3.
Задачу решили:
23
всего попыток:
252
На стороне BC выпуклого четырёхугольника произвольным образом выбрана точка E. Окружности, вписанные в треугольники ABE, CDE, AED, имеют общую касательную. Найдите длину стороны AD, если AB=32, BC=36, CD=48. В ответе введите сумму минимального и максимального возможных значений.
Задачу решили:
65
всего попыток:
77
Дан выпуклый четырехугольник АВСD. Серединные перпендикуляры к диагоналям BD и AC пересекают AD в точках X и Y соответственно, причем X лежит между А и Y. Оказалось что прямые BX и CY параллельны. Найти угол (в градусах) между BD и АС.
Задачу решили:
64
всего попыток:
66
Серединные перпендикуляры к диагоналям BD и АС вписанного четырехугольника АВСD пересекают сторону AD в точках X и Y соответственно. Пусть М середина ВС и расстояние от М до прямой ВХ = k, а расстояние до прямой СY равно u. Найти отношение k/u.
Задачу решили:
56
всего попыток:
277
Десять школьников стоят в ряд. Каждую минуту какие-то два соседних школьника меняются местами. Через некоторое время выяснилось, что каждый из школьников успел побывать на первом и последнем месте. Найдите минимальное число минут которое могло пройти.
Задачу решили:
108
всего попыток:
229
В отряде восемь бойцов. Каждую ночь трое уходят в разведку, причём, никакие двое бойцов не должны ходить в разведку вместе дважды. Найдите максимальное возможное число ночей, в которые отряд может посылать разведчиков.
Задачу решили:
38
всего попыток:
187
Продолжения сторон (AD и BC) и (AB и CD) выпуклого четырехугольника ABCD пересекаются в точках E и F соответственно. Для определенности будем считать, что E и F лежат по одну сторону от прямой AC. (см.рис.) Внутри диагонали AC произвольным образом выбрана точка G. Прямые BG || DH || EI || FJ параллельны друг другу, а точки H, I, J являются точками пересечения соответствующих прямых с прямой AC так, что |DH|=a, |EI|=b, |FJ|=c. Найдите длину отрезка |BG|, если a=9, b=3, c=6.
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|