img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
отражение
Лента событий: Lec добавил комментарий к задаче "Десятичная запись квадрата" (Математика):
Рисунок
Rss

Задачи: Математика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 133
всего попыток: 236
Задача опубликована: 28.01.11 08:00
Прислала: Marishka24 img
Источник: Новосибирская областная открытая студенческая...
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: Xardas (Алексей Кузнецов)

Пусть x — четырёхзначное число в десятичной записи. Я написала его цифры в обратном порядке и полученное число вычла из x. В результате я получила число 1818. Найти все такие числа x. В ответе укажите их количество.

(Число, записанное в обратном порядке, должно быть также четырехзначным.)
Задачу решили: 171
всего попыток: 333
Задача опубликована: 16.02.11 08:00
Прислала: Marishka24 img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: Vkorsukov

Гоблин родился в понедельник. Какой день недели будет через 3652011 суток после его рождения? (В ответе укажите: 1 — если понедельник, 2 — если вторник, 3 — если среда и т.д.)

Задачу решили: 217
всего попыток: 359
Задача опубликована: 06.04.11 08:00
Прислал: Busy_Beaver img
Источник: Школа №57г.Москвы
Вес: 1
сложность: 1 img
класс: 1-5 img
баллы: 100
Лучшее решение: bbny

Два лыжника шли с постоянной скоростью 6 км/ч на расстоянии 200 метров друг от друга. Потом они стали подниматься в горку, где их скорость упала до 4 км/ч. Потом оба лыжника съехали с горки со скоростью 7 км/ч и попали в глубокий снег, где их скорость стала всего 3 км/ч. Каким (в метрах) стало расстояние между ними?

 

Задачу решили: 223
всего попыток: 333
Задача опубликована: 13.04.11 08:00
Прислал: Misha2007 img
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Лучшее решение: azat

Для нумерации страниц книги потребовалось всего 1392 цифры. Сколько страниц в этой книге? (Нумерация начинается с первой страницы.)

Задачу решили: 108
всего попыток: 319
Задача опубликована: 29.04.11 08:00
Прислала: Marishka24 img
Источник: Индийская региональная олимпиада
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: Timur

Сколько натуральных чисел делят число 102011, но не делят число 102010?

Задачу решили: 122
всего попыток: 202
Задача опубликована: 06.05.11 08:00
Прислала: Marishka24 img
Источник: Мексиканская олимпиада
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Лучшее решение: Anton_Lunyov

Сколько различных натуральных делителей (включая единицу и само число) у факториала числа 20?

Задачу решили: 78
всего попыток: 284
Задача опубликована: 18.05.11 00:00
Прислала: Hasmik33 img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: Timur

У остроугольного треугольника радиус описанной окружности равен 100. Найдите минимальное целое значение его периметра.

Задачу решили: 250
всего попыток: 325
Задача опубликована: 30.05.11 08:00
Прислал: marafon img
Источник: М.Гарднер
Вес: 1
сложность: 1 img
класс: 1-5 img
баллы: 100
Лучшее решение: Timur

Некто решил раздать лишние после варки компота яблоки. Первому встречному он отдал половину всех яблок плюс пол-яблока. Второму — половину оставшихся плюс пол-яблока. Третьему — также половину оставшихся плюс пол-яблока, после чего яблок у него не осталось. Сколько было роздано яблок?

Задачу решили: 130
всего попыток: 147
Задача опубликована: 01.06.11 08:00
Прислал: Timur img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100

Найдите такое наименьшее натуральное число N, что N/2 — квадрат натурального числа, N/3 — куб натурального числа, а N/5 —  пятая степень натурального числа.

Задачу решили: 135
всего попыток: 184
Задача опубликована: 11.07.11 08:00
Прислал: TALMON img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: Mnohogrannik

Два друга гуляли по парку. Все дорожки в парке —  концентрические окружности и "радиусы" — отрезки, соединяющие некоторые точки самой внешней окружности с центром. Находясь как раз у одной из точек пересечения окружности с "радиусом", они вдруг подумали:

 — А интересно, какой путь короче: если идти сейчас по "радиусу" до более маленькой окружности, по ней идти до следующего "радиуса" и вернутся по нему к нашей окружности (этот путь изображён на рисунке зелённым цветом), или просто продолжить путь по нашей окружности до той же точки (на рисунке: красный цвет)?

Решили попробовать, разделились, пошли с одинаковой скоростью этими двумя разными путями и... пришли к точке встречи одновременно! Чему равен угол между этими двумя "радиусами"?

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.