Лента событий:
Lec добавил комментарий к задаче "Десятичная запись квадрата" (Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
133
всего попыток:
236
Пусть x — четырёхзначное число в десятичной записи. Я написала его цифры в обратном порядке и полученное число вычла из x. В результате я получила число 1818. Найти все такие числа x. В ответе укажите их количество.
Задачу решили:
171
всего попыток:
333
Гоблин родился в понедельник. Какой день недели будет через 3652011 суток после его рождения? (В ответе укажите: 1 — если понедельник, 2 — если вторник, 3 — если среда и т.д.)
Задачу решили:
217
всего попыток:
359
Два лыжника шли с постоянной скоростью 6 км/ч на расстоянии 200 метров друг от друга. Потом они стали подниматься в горку, где их скорость упала до 4 км/ч. Потом оба лыжника съехали с горки со скоростью 7 км/ч и попали в глубокий снег, где их скорость стала всего 3 км/ч. Каким (в метрах) стало расстояние между ними?
Задачу решили:
223
всего попыток:
333
Для нумерации страниц книги потребовалось всего 1392 цифры. Сколько страниц в этой книге? (Нумерация начинается с первой страницы.)
Задачу решили:
108
всего попыток:
319
Сколько натуральных чисел делят число 102011, но не делят число 102010?
Задачу решили:
122
всего попыток:
202
Сколько различных натуральных делителей (включая единицу и само число) у факториала числа 20?
Задачу решили:
78
всего попыток:
284
У остроугольного треугольника радиус описанной окружности равен 100. Найдите минимальное целое значение его периметра.
Задачу решили:
250
всего попыток:
325
Некто решил раздать лишние после варки компота яблоки. Первому встречному он отдал половину всех яблок плюс пол-яблока. Второму — половину оставшихся плюс пол-яблока. Третьему — также половину оставшихся плюс пол-яблока, после чего яблок у него не осталось. Сколько было роздано яблок?
Задачу решили:
130
всего попыток:
147
Найдите такое наименьшее натуральное число N, что N/2 — квадрат натурального числа, N/3 — куб натурального числа, а N/5 — пятая степень натурального числа.
Задачу решили:
135
всего попыток:
184
Два друга гуляли по парку. Все дорожки в парке — концентрические окружности и "радиусы" — отрезки, соединяющие некоторые точки самой внешней окружности с центром. Находясь как раз у одной из точек пересечения окружности с "радиусом", они вдруг подумали: — А интересно, какой путь короче: если идти сейчас по "радиусу" до более маленькой окружности, по ней идти до следующего "радиуса" и вернутся по нему к нашей окружности (этот путь изображён на рисунке зелённым цветом), или просто продолжить путь по нашей окружности до той же точки (на рисунке: красный цвет)? Решили попробовать, разделились, пошли с одинаковой скоростью этими двумя разными путями и... пришли к точке встречи одновременно! Чему равен угол между этими двумя "радиусами"?
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|