Лента событий:
vochfid добавил комментарий к задаче "Десятичная запись квадрата" (Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
30
всего попыток:
49
Длина стороны правильного семиугольника равна 7. На каждой из них отмечено по 8 точек (включая вершины), разбивающих сторону на единичные отрезки. Через каждые 2 точки проведены прямые линии. Сколько получилось различных прямых.
Задачу решили:
23
всего попыток:
112
На шахматной доске 8x8 разместили максимально возможное количество ферзей каждого цвета, так что ни один черный ферзь не находится под ударом никакого из белых. Сколько всего ферзей находится на доске?
Задачу решили:
27
всего попыток:
68
81 оловянный солдатик построен в каре (это расстановка в виде квадрата). Какое наименьшее число солдатиков можно передвинуть так, чтобы все 81 образовали каре большего размера, в сравнении с первоначальным?
Задачу решили:
25
всего попыток:
54
Грузовик заполняют ящиками с овощами. Всего в него помещается ровно 2018 ящиков. При загрузке соблюдают следующие ограничения: Сколько существует способов наполнения грузовика?
Задачу решили:
32
всего попыток:
39
Переложите одну спичку, чтобы равенство стало верным.
Задачу решили:
37
всего попыток:
60
В стандартном комплекте домино 28 костяшек с числами от 0 до 6. Прикладывая костяшки этого комплекта друг к другу по правилам домино, можно сложить фигуру, изображенную на рисунке. При этом можно добиться того, чтобы сумма всех чисел в каждой из пяти рамок была одной и той же. Чему равна эта сумма?
Задачу решили:
25
всего попыток:
138
На шахматном поле существует всего три замкнутых маршрута коня длиной 4 хода, изображенных на рисунке. Сколько существует различных замкнутых маршрутов коня длиной 6 ходов?
Задачу решили:
63
всего попыток:
103
Дата 10.02.2001 (ДД.ММ.ГГГГ), если убрать точки превращается в палиндром 10022001 (читается одинаково слева направо и справа налево). Найдите ближайшую предыдущую дату, которая обладает таким же свойством. В качестве ответа введите полученное из неё число (без точек).
Задачу решили:
44
всего попыток:
93
Вычеркните из произведения 1!·2!·3!·...·200! один из факториалов, то есть множитель вида k!, так, чтобы произведение оставшихся было квадратом целого числа. В ответе укажите наименьшее значение k.
Задачу решили:
26
всего попыток:
96
Десять пронумерованных фишек расположены в форме треугольника. За один ход любые три соседние фишки можно повернуть вокруг их общего центра на угол 120° так, чтобы они циклически переместились, причем, как по часовой стрелке, так и против неё. Здесь всего девять троек фишек, которые можно поворачивать. За какое, наименьшее число ходов можно из данного слева расположения фишек получить расположение, изображенное справа?
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|