img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
отражение
Лента событий: vochfid добавил комментарий к задаче "Десятичная запись квадрата" (Математика):
Рисунок
Rss

Задачи: Математика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 20
всего попыток: 55
Задача опубликована: 16.08.21 08:00
Прислал: TALMON img
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Темы: логикаimg
Лучшее решение: Sam777e

"Докажем", что все лошади одного цвета. Укажите номер первого ошибочного пункта в следующем изложении:

Докажем по индукции, что для любого натурального числа n выполняется следующее утверждение:

Любая группа из n лошадей состоит из лошадей одного цвета.

1. Для n=1 утверждение верно. Действительно, любая группа из ОДНОЙ лошади состоит из лошадей одного цвета.

Покажем, что из выполнимости утверждения для какого-то n следует его выполнимость для n+1.

2. Пусть утверждение верно для какого-то n. Рассмотрим любую группу из n+1 лошадей.

3. Удалим из этой группы одну лошадь. Согласно предположению индукции, все оставшиеся n лошадей одного цвета.

4. Вернём удалённую лошадь, а вместо неё удалим другую лошадь.

5. Опять все оставшиеся n лошадей одного цвета.

6. Следовательно, все n+1 лошадь одного цвета.

7. Теорема доказана! Smile

Задачу решили: 10
всего попыток: 14
Задача опубликована: 20.08.21 08:00
Прислал: TALMON img
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Лучшее решение: DOMASH (Александр Домашенко-Мирный)

Рассмотрим следующие 6 свободных полиомино:

Общие части полиомино

Свободное, или двустороннее полиомино – сколько бы его ни сдвигать, поворачивать и переворачивать, считается, что оно одно и тот же. В дальнейшем говорится только о таких.

Определение. Если полиомино B можно построить путём добавления какого-то количества квадратиков (0 или больше) к полиомино A, то будем говорить, что A является подполиомино B. Нужно построить таблицу из 6x6=36 символов – НУЛЕЙ и ЕДИНИЦ – таким образом:
В x-м символе y-й строки нужно записать ЕДИНИЦУ, если существует подполиомино y-го полиомино, которое также является подполиомино x-го полиомино, но не является подполиомино ни одного из остальных полиомино.
В противном случае нужно записать в этой позиции НОЛЬ.

Введите в ответ все эти символы подряд, строку за строкой. Нумерация строк идёт сверху вниз, а символов в строке – слева направо. Номера полиомино показаны на их изображениях.

Задачу решили: 25
всего попыток: 82
Задача опубликована: 13.09.21 08:00
Прислал: avilow img
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Лучшее решение: makar243 (Сулейман Макаренко)

На ступенчатом квадрате построен замкнутый маршрут шахматного коня, состоящий из 14 прыжков.

Самый длинный маршрут

Постройте здесь замкнутый маршрут, содержащий максимально возможное число прыжков коня. Дважды прыгать в одну клетку нельзя. Начинать можно с любой клетки. В ответе укажите число прыжков шахматного коня в этом маршруте.

Задачу решили: 23
всего попыток: 106
Задача опубликована: 24.09.21 08:00
Прислал: TALMON img
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Лучшее решение: Vkorsukov

На ступенчатой клеточной доске показан замкнутый маршрут козлотура, состоящий из 6-и прыжков:

Самый длинный маршрут козлотура

Найдите замкнутый маршрут козлотура на этой же доске, содержащий максимально возможное число прыжков. Дважды прыгать в одну клетку нельзя. В ответе укажите число прыжков козлотура в этом маршруте.

Задачу решили: 17
всего попыток: 62
Задача опубликована: 06.10.21 08:00
Прислал: TALMON img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: bbny

На шахматной доске n на n расставлены n2 ферзей n различных цветов, по n ферзей каждого цвета. Каждый ферзь стоит на отдельной клетке, и ни один ферзь не стоит ни на той же горизонтали, ни на той же вертикали, ни на той же диагонали (большой или маленькой) что другой ферзь того же цвета. На рисунке показан пример такой расстановки ферзей для n=5:

Ферзи

Найдите 4 наименьших натуральных числа n, для которых это возможно. Укажите в ответе их сумму.

Задачу решили: 23
всего попыток: 67
Задача опубликована: 13.10.21 08:00
Прислал: admin img
Источник: Задачи и головоломки на FB
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: user033 (Олег Сopoкин)

На доске 5x5 расставлены 25 шашек реверси. За один ход разрешено перевернуть любую шашку и все соседние с ней (по стороне). Перевернутая шашка имеет другой цвет.

Вначале все шашки белые. За какое наименьшее число ходов удастся получить позицию с одной чёрной шашкой?

Задачу решили: 16
всего попыток: 16
Задача опубликована: 01.11.21 08:00
Прислал: admin img
Источник: Задачи и головоломки на FB
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Лучшее решение: Vkorsukov

Как разрезать правильный пятиугольник на 4 треугольника так, чтобы из них можно было составить равнобедренную трапецию?

Задачу решили: 2
всего попыток: 4
Задача опубликована: 24.11.21 08:00
Прислал: DOMASH img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100

Поверхность правильного тетраэдра разрезать на части и сложить из них правильный  октаэдр без просветов и наложений. На какое минимальное число частей можно разрезать тетраэдр?

Задачу решили: 8
всего попыток: 19
Задача опубликована: 11.02.22 08:00
Прислал: TALMON img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: DOMASH (Александр Домашенко-Мирный)

Из бумаги склеили правильный тетраэдр. Затем на его поверхности последовательно сделали n разрезов в форме отрезков прямых, в результате чего она распалась на m частей, которыми удалось оклеить без просветов и наложений 3 одинаковых правильных тетраэдра, не имеющих общих точек. Найдите минимально возможное значение 100m + n.

Замечание: разрезания разрешено чередовать с развёртыванием исходного тетраэдра.

Задачу решили: 18
всего попыток: 35
Задача опубликована: 18.02.22 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: DOMASH (Александр Домашенко-Мирный)

На плоскости в узлах правильной треугольной решетки расположены точки так, что их множество образует правильный шестиугольник. На стороне этого шестиугольника 10 точек (рис. для 4 точек).

Шестиугольники на решетке

Сколько существует правильных шестиугольников, которые определяются эти точки как их вершины?

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.