Лента событий:
vochfid добавил комментарий к задаче "Десятичная запись квадрата" (Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
20
всего попыток:
55
"Докажем", что все лошади одного цвета. Укажите номер первого ошибочного пункта в следующем изложении: Докажем по индукции, что для любого натурального числа n выполняется следующее утверждение: Любая группа из n лошадей состоит из лошадей одного цвета. 1. Для n=1 утверждение верно. Действительно, любая группа из ОДНОЙ лошади состоит из лошадей одного цвета. Покажем, что из выполнимости утверждения для какого-то n следует его выполнимость для n+1. 2. Пусть утверждение верно для какого-то n. Рассмотрим любую группу из n+1 лошадей. 3. Удалим из этой группы одну лошадь. Согласно предположению индукции, все оставшиеся n лошадей одного цвета. 4. Вернём удалённую лошадь, а вместо неё удалим другую лошадь. 5. Опять все оставшиеся n лошадей одного цвета. 6. Следовательно, все n+1 лошадь одного цвета. 7. Теорема доказана!
Задачу решили:
10
всего попыток:
14
Рассмотрим следующие 6 свободных полиомино: Свободное, или двустороннее полиомино – сколько бы его ни сдвигать, поворачивать и переворачивать, считается, что оно одно и тот же. В дальнейшем говорится только о таких. Определение. Если полиомино B можно построить путём добавления какого-то количества квадратиков (0 или больше) к полиомино A, то будем говорить, что A является подполиомино B. Нужно построить таблицу из 6x6=36 символов – НУЛЕЙ и ЕДИНИЦ – таким образом: Введите в ответ все эти символы подряд, строку за строкой. Нумерация строк идёт сверху вниз, а символов в строке – слева направо. Номера полиомино показаны на их изображениях.
Задачу решили:
25
всего попыток:
82
На ступенчатом квадрате построен замкнутый маршрут шахматного коня, состоящий из 14 прыжков. Постройте здесь замкнутый маршрут, содержащий максимально возможное число прыжков коня. Дважды прыгать в одну клетку нельзя. Начинать можно с любой клетки. В ответе укажите число прыжков шахматного коня в этом маршруте.
Задачу решили:
23
всего попыток:
106
На ступенчатой клеточной доске показан замкнутый маршрут козлотура, состоящий из 6-и прыжков: Найдите замкнутый маршрут козлотура на этой же доске, содержащий максимально возможное число прыжков. Дважды прыгать в одну клетку нельзя. В ответе укажите число прыжков козлотура в этом маршруте.
Задачу решили:
17
всего попыток:
62
На шахматной доске n на n расставлены n2 ферзей n различных цветов, по n ферзей каждого цвета. Каждый ферзь стоит на отдельной клетке, и ни один ферзь не стоит ни на той же горизонтали, ни на той же вертикали, ни на той же диагонали (большой или маленькой) что другой ферзь того же цвета. На рисунке показан пример такой расстановки ферзей для n=5: Найдите 4 наименьших натуральных числа n, для которых это возможно. Укажите в ответе их сумму.
Задачу решили:
23
всего попыток:
67
На доске 5x5 расставлены 25 шашек реверси. За один ход разрешено перевернуть любую шашку и все соседние с ней (по стороне). Перевернутая шашка имеет другой цвет. Вначале все шашки белые. За какое наименьшее число ходов удастся получить позицию с одной чёрной шашкой?
Задачу решили:
16
всего попыток:
16
Как разрезать правильный пятиугольник на 4 треугольника так, чтобы из них можно было составить равнобедренную трапецию?
Задачу решили:
2
всего попыток:
4
Поверхность правильного тетраэдра разрезать на части и сложить из них правильный октаэдр без просветов и наложений. На какое минимальное число частей можно разрезать тетраэдр?
Задачу решили:
8
всего попыток:
19
Из бумаги склеили правильный тетраэдр. Затем на его поверхности последовательно сделали n разрезов в форме отрезков прямых, в результате чего она распалась на m частей, которыми удалось оклеить без просветов и наложений 3 одинаковых правильных тетраэдра, не имеющих общих точек. Найдите минимально возможное значение 100m + n. Замечание: разрезания разрешено чередовать с развёртыванием исходного тетраэдра.
Задачу решили:
18
всего попыток:
35
На плоскости в узлах правильной треугольной решетки расположены точки так, что их множество образует правильный шестиугольник. На стороне этого шестиугольника 10 точек (рис. для 4 точек). Сколько существует правильных шестиугольников, которые определяются эти точки как их вершины?
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|