Лента событий:
Lec добавил комментарий к задаче "Десятичная запись квадрата" (Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
106
всего попыток:
126
Из разбившейся авторучки на квадратный ковёр 4×4 попали 15 чернильных брызг. Докажите, что из этого ковра можно вырезать чистый квадрат со стороной 0,999. (Брызги считать точками.)
Задачу решили:
135
всего попыток:
292
Сколько существует попарно различных треугольников с целочисленными сторонами и периметром 40?
Задачу решили:
204
всего попыток:
703
Однажды на лестнице я нашёл тетрадь, в которой было написано сто следующих утверждений: 1. «В этой тетради не менее одного неверного утверждения.» 2. «В этой тетради не менее двух неверных утверждений.» 3. «В этой тетради не менее трёх неверных утверждений.» ............................................................... 100. «В этой тетради не менее ста неверных утверждений.» Сколько утверждений в тетради являются верными?
Задачу решили:
360
всего попыток:
441
В семейной рок-группе состоят Иван Петрович, Петр Иванович, Петр Сергеевич, Сергей Петрович и Сергей Сергеевич Ивановы. Один из них — гитарист, папа гитариста — трубач, брат гитариста — пианист, а дети гитариста — ударники. Как зовут гитариста? (В ответе введите его инициалы прописными буквами без знаков препинания и пробелов: "ИП", "ПИ", "ПС", "СП" или "СС".)
Задачу решили:
233
всего попыток:
287
На острове Невезения проживают только рыцари и лжецы. Если лжецу задать вопрос "сколько?", он называет число на 2 большее или на 2 меньшее, чем правильный ответ; рыцарь, разумеется, отвечает верно. Путешественник встретил двух островитян и спросил: "Сколько рыцарей и сколько лжецов живут на вашем острове?" Первый ответил: "Если не считать меня, то 1002 рыцаря и 1001 лжец." Второй: "Если не считать меня, то 999 рыцарей и 1000 лжецов." Сколько на самом деле рыцарей и лжецов на острове Невезения? В ответе укажите произведение числа рыцарей на число лжецов.
Задачу решили:
257
всего попыток:
410
Путешественник заблудился на острове, где живут два племени: Правдивые (всегда говорят правду) и Лживые (всегда лгут). Выглядят они одинаково, говорят на одном языке и свободно передвигаются по всему острову. Из леса выходит туземец, у которого путешественнику нужно узнать, на чьей территории он сейчас находится. Каким наименьшим числом вопросов сможет обойтись путешественник?
Задачу решили:
110
всего попыток:
160
Сколькими способами можно расставить в ряд все десять цифр от 0 до 9 включительно так, чтобы сумма любых трёх из них, идущих подряд, не превышала 12?
Задачу решили:
77
всего попыток:
279
Даны четырёхугольник ABCD, в котором ΑΒ=25, BC=17, CD=26, DA=15; и ещё две точки: точка E на стороне AB и точка F на стороне CD такие, что AE=10, EB=15, CF=9 и FD = 17. Пусть K - точка пересечения отрезков AF и DE, L - точка пересечения отрезков EC и BF, M - точка пересечения отрезков AC и BD. Чему равен угол KML (в градусах, округляя до целого числа)?
Задачу решили:
176
всего попыток:
288
На шахматной доске 8×8 проведена прямая линия, не проходящая через углы клеток. Какое наибольшее число клеток она может пересекать?
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|