Лента событий:
Lec добавил комментарий к задаче "Десятичная запись квадрата" (Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
32
всего попыток:
42
За круглым столом заседают N рыцарей. Каждое утро чародей Мерлин сажает их в другом порядке. Начиная со второго дня Мерлин разрешил рыцарям делать в течение дня сколько угодно пересадок такого вида: два сидящих рядом рыцаря меняются местами, если только они не были соседями в первый день. Рыцари стараются сесть в том же порядке, что и в какой-нибудь из предыдущих дней: тогда заседания прекратятся. Какое наибольшее число дней Мерлин гарантированно может проводить заседания? (Рассадки, получающиеся друг из друга поворотом, считаются одинаковыми. Мерлин за столом не сидит.)
Задачу решили:
56
всего попыток:
171
Два муравья проползли каждый по своему замкнутому маршруту на доске 9 × 9. Каждый полз только по сторонам клеток доски и побывал в каждой из 100 вершин клеток ровно один раз. Каково наименьшее возможное число таких сторон, по которым проползали и первый, и второй муравьи?
Задачу решили:
44
всего попыток:
158
Рассмотрим на плоскости все такие треугольники, что координаты двух их вершин задаются целыми положительными числами не больше 10, а третья их вершина - начало координат (0,0). Сколько из них имеют целочисленную площадь?
Задачу решили:
67
всего попыток:
123
По кругу лежат 100 белых камней. Дано целое число k в пределах от 1 до 50. За ход разрешается выбрать любые k подряд идущих камней, первый и последний из которых белые, и покрасить первый и последний камни в черный цвет. При каком максимальном k можно за несколько таких ходов покрасить все 100 камней в черный цвет?
Задачу решили:
38
всего попыток:
377
На рисунке ноль имеет 2 квадратика касающихся квадратиков следующей цифры – единицы. Единица имеет 3 квадратика касающихся квадратиков соседних цифр. Цифра 2 имеет 4 квадратика касающихся квадратиков соседних цифр и т.д. Девятка имеет 4 квадратика касающихся квадратиков цифры 8. Если значение каждой цифры умножить на число квадратиков касающихся квадратиков других цифр и сложить эти произведения, получим: 0·2+1·3+2·4+3·6+4·7+5·8+6·5+7·6+8·9+9·4=277. Переставить цифры не переворачивая их так, чтобы получить максимальную сумму. Ответом является полученная сумма. Число может начинаться с нуля, накладывать цифры друг на друга и выдвигать по вертикали нельзя.
Задачу решили:
93
всего попыток:
374
В компании ровно у одного — один друг, ровно у одного — два друга и т.д. до пяти. Какое наименьшее число людей может быть в такой компании?
Задачу решили:
21
всего попыток:
106
В межгалактическом соревновании Остапа Бендера участвовали 2012 шахматистов. Странной тройкой будем называть шахматистов X, Y и Z, если X побеждает Y, Y побеждает Z, а Z побеждает X. Какое наибольшее возможное количество странных троек может быть?
Задачу решили:
137
всего попыток:
209
Для кодирования натуральных чисел с помощью буквенных последовательностей был предложен следующий принцип шифрования: Числам 1, 2, 3 и 4 ставятся в соответствие буквы A, B, C и D. Последующим 16 числам ставятся в соответствие двухбуквенные коды в следующем порядке: 5=AA, 6=AB, 7=AC, 8=AD, 9=BA, 10=BB, …, 18=DB, 19=DC, 20=DD. Аналогично для последующих чисел используются трехбуквенные коды (от 21=AAA до 84=DDD), четырехбуквенные и т.д. Укажите буквенный код числа 295?
(В ответе нужно записать последовательность из латинских букв.)
Задачу решили:
41
всего попыток:
250
Среди X монет одна фальшивая (более лёгкая). Известно, что её заведомо можно найти не более, чем за 100 взвешиваний на чашечных весах без гирь, при этом каждую монету нельзя взвешивать более двух раз. Найдите наибольшее значение X.
Задачу решили:
33
всего попыток:
52
Найдите количество взаимно-однозначных отображений, для которых выполняется ровно одно из условий .
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|