img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
отражение
Лента событий: vochfid добавил комментарий к задаче "Десятичная запись квадрата" (Математика):
Рисунок
Rss

Задачи: Математика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 65
всего попыток: 121
Задача опубликована: 27.02.12 08:00
Прислал: Dremov_Victor img
Источник: Японская математическая олимпиада
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: Vkorsukov

Пусть n > 2 целое число. Найдите наибольшее K и наименьшее G, при которых для любых положительных чисел a1, a2, ..., an справедливо следующее неравенство:

K <
\frac{a_1}{a_1 + a_2} + 
\frac{a_2}{a_2 + a_3} + \cdots
\frac{a_n}{a_n + a_1} <
G

Чему равно K+G для n = 100.

 

Задачу решили: 89
всего попыток: 185
Задача опубликована: 01.03.12 08:00
Прислал: levvol img
Источник: По мотивам задачи И.Ньютона
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: zmerch

У фермера в хозяйстве овцы и коровы, фермер арендует пастбище у своего соседа.  Сосед сообщает ему, что из предыдущего опыта известно,  что 140 овец за 12 дней съедают всю растительность на пастбище, 60 овец за 60 дней съедят всю растительность на этом же пастбище (трава растет). 30 коров  поедят всю растительность за 20 дней. Фермер решает выпустить всех своих 12 коров на пастбище совместно с овцами на 30 дней аренды. Сколько овец он может выпустить на арендуемое пастбище? 

Задачу решили: 94
всего попыток: 109
Задача опубликована: 09.03.12 08:00
Прислал: Yhlas img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: Timur

f(x)=4x/(4x+2)

S=f(0)+f(1/n)+f(2/n)+…+f((n-1)/n)+f(1)=? (n-нечетное)

Чему равно S при n=2011?

Задачу решили: 147
всего попыток: 213
Задача опубликована: 30.03.12 08:00
Прислал: kolkingen img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: 0Vlas

Вы пошли в супермаркет за дисками. Один диск стоит 1 доллар, но при приобретении X дисков (X < 100) вы получаете скидку X %. Когда вы пришли домой, вам сказал брат: "Ты заплатил за диски наибольшую возможную сумму денег!". Сколько долларов вы заплатили?

Задачу решили: 38
всего попыток: 377
Задача опубликована: 20.04.12 08:00
Прислал: levvol img
Источник: http://otuzoyun.com
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100

На рисунке ноль имеет 2 квадратика касающихся квадратиков  следующей цифры – единицы. Единица имеет 3  квадратика касающихся квадратиков соседних цифр. Цифра 2 имеет 4  квадратика касающихся квадратиков соседних цифр и т.д. Девятка имеет 4  квадратика касающихся квадратиков  цифры 8. Если значение каждой цифры умножить на число квадратиков касающихся квадратиков других цифр и сложить эти произведения, получим:

0·2+1·3+2·4+3·6+4·7+5·8+6·5+7·6+8·9+9·4=277.

Переставить цифры не переворачивая их так, чтобы получить  максимальную сумму. Ответом является полученная сумма.

Число может начинаться с нуля, накладывать цифры друг на друга и выдвигать по вертикали нельзя.

Задачу решили: 93
всего попыток: 374
Задача опубликована: 23.04.12 08:00
Прислал: Anonim img
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Лучшее решение: Timur

В компании ровно у одного — один друг, ровно у одного — два друга и т.д. до пяти. Какое наименьшее число людей может быть в такой компании?

Задачу решили: 21
всего попыток: 106
Задача опубликована: 27.04.12 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
баллы: 100
Лучшее решение: zmerch

В межгалактическом соревновании Остапа Бендера участвовали 2012 шахматистов. Странной тройкой будем называть шахматистов X, Y и Z, если X побеждает Y, Y побеждает Z, а Z побеждает X. Какое наибольшее возможное количество странных троек может быть?

Задачу решили: 87
всего попыток: 211
Задача опубликована: 11.05.12 08:00
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: TALMON (Тальмон Сильвер)

Сколько целых пар x и y удовлетворяет системе неравенств
y≥0
y ≤ 900 - x2?

Задачу решили: 169
всего попыток: 194
Задача опубликована: 14.05.12 08:00
Прислал: kolkingen img
Источник: Международный конкурс "Кенгуру"
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Темы: алгебраimg
Лучшее решение: ilam

Дан ряд чисел: 1, 2, 3, 4, 5, 6, 7, 8, 9. Какую цифру нужно выбросить из данного ряда, чтобы  наименьшее общее кратное оставшихся чисел было самым маленьким из возможных?

Задачу решили: 133
всего попыток: 301
Задача опубликована: 16.05.12 08:00
Прислал: leonidr321 img
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Темы: алгебраimg
Лучшее решение: Sam777e

В доме 100 этажей. Вася живет на 19-м, а Коля - на 96 этаже. Лифт в доме имеет только 2 кнопки: "+7" (подняться на 7 этажей) и "-9" (опуститься на 9 этажей). Какое минимальное количество раз должен нажать Коля на кнопку "+7", чтобы попасть к Васе на лифте.

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.