Лента событий:
Lec добавил комментарий к задаче "Десятичная запись квадрата" (Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
22
всего попыток:
25
Трапеция, у которой точки середин всех сторон принадлежат одной окружности, имеет боковые стороны 7 и 4, малое основание 1. Найти длину большого основания.
Задачу решили:
26
всего попыток:
31
В прямоугольнике ABCD проведены отрезки AL (L - середина ВС), DK (K - середина AL), CN (N - середина DK), LM (M - середина СN). Найти отношение площади четырехугольника KLMN к площади прямоугольника ABCD.
Задачу решили:
18
всего попыток:
25
Внутри прямоугольной трапеция ABCD (боковая сторона ВС перпендикулярна основаниям АВ и CD) проведена полуокружность с центром О (точка середины стороны ВС) и диаметром, равным длине ВС, которая имеет точку касания М с боковой стороной AD. Отрезок ВМ пересекается с диагональю АС в точке К. Отрезки |ВК|=12, |КМ|=3. Найти квадрат площади трапеции.
Задачу решили:
14
всего попыток:
16
В трапеции ABCD (AB-большое основание) проведены диагонали АС и BD (E-точка их пересечения). Прямая, проведенная через С параллельно AD, пересекает диагональ BD в точке F. Площади треугольников DEC, EFC, FBC целочисленны и каждая имеет двузначное численное значение. Найти площадь треугольника EFC, если известно, что площади двух других треугольников являются последовательными числами.
Задачу решили:
11
всего попыток:
18
Определим f(n) для каждого натурального n как количество прямоугольных треугольников с целыми длинами сторон, одна из которых равна n. Найдите f(2³×3³×5³×7³×11³×13³).
Задачу решили:
27
всего попыток:
34
На гипотенузе прямоугольного треугольника длины 35 расположен центр окружности радиуса 12, которая касается катетов. Найти площадь треугольника.
Задачу решили:
8
всего попыток:
13
Определим f(n) для каждого натурального n как количество прямоугольных треугольников с целыми длинами сторон, одна из которых равна n. Найдите шестнадцатое (в порядке возрастания) натуральное число n, для которого f(n)=18.
Задачу решили:
9
всего попыток:
10
Определим f(n) для каждого натурального n как количество прямоугольных треугольников с целыми длинами сторон, одна из которых равна n. Найдите семидесятое (в порядке возрастания) натуральное число n, для которого f(n)=14.
Задачу решили:
24
всего попыток:
32
На плоскости изображен выпуклый 9-тиугольник А1А2А3А4А5А6А7А8А9. Найти сумму углов "звёздочки" А1А3А5А7А9А2А4А6А8А1 в градусах.
Задачу решили:
19
всего попыток:
21
Пусть выпуклый 4-угольник Q (не трапеция) имеет 2 прямых угла и одну лишь пару равных сторон. Постройте отрезок (циркулем и линейкой) с концами на периметре данного Q в качестве стороны квадрата с той же площадью, что и у Q. Заодно, предполагая стороны Q целочисленными, найдите минимальную целочисленную длину искомого отрезка.
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|