Лента событий:
vochfid добавил комментарий к задаче "Десятичная запись квадрата" (Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
18
всего попыток:
27
На гранях кубика написаны все буквы слова "ХОРОШО" - по одной букве на грань (буква О, например, написана 3 раза). Сколько раз в среднем надо бросить кубик, чтобы 6 последовательных бросков дали слово "ХОРОШО"?
Задачу решили:
21
всего попыток:
23
В описанной трапеции ABCD (AD и ВС - основания) |АВ|=21, |ВС|=9, |CD|=24. Найти длину хорды вписанной окружности, образованной диагональю АС.
Задачу решили:
22
всего попыток:
23
20 студентов сдавали экзамен по очереди. Сначала они написали на бумажках номера от 1 до 20 и случайным образом вытаскивали по одной бумажке, тот кто вытащил бумажку с номером 1, пошел сдавать первым. Затем бумажка с номером 20 была уничтожена и оставшиеся студенты снова вытаскивали бумажки и снова, вытащивший номер 1 шел следующим. Процедура повторялась каждый раз, пока все студенты не сдали экзамен. Как оказалось, у каждого студента все вытянутые им номера были различными. Староста группы в первый раз вытащил число 14. Каким по счету он пошел отвечать?
Задачу решили:
22
всего попыток:
37
Найдите наименьший периметр прямоугольного треугольника, все стороны которого – рациональные числа, а площадь равна 5.
Задачу решили:
22
всего попыток:
32
Вписанная в трапецию окружность разделила среднюю линию на три отрезка 3, 24, 8. Найти длину большого основания.
Задачу решили:
22
всего попыток:
24
Точка вне квадрата находится на расстояниях от концов одной из диагоналей в отношении между собой 1:4. Угол между отрезками этих расстояний прямой. Найти отношение расстояний от этой точки до концов другой диагонали (меньшего к большему).
Задачу решили:
19
всего попыток:
25
Найти квадрат отношения радиусов, описанных около двух четырехугольников со сторонами 2, 3, 4, 5 и 3, 4, 5, 6.
Задачу решили:
21
всего попыток:
24
В трапеции угол между диагоналями равен 30°, и они делят острые углы трапеции пополам. Найдите площадь трапеции, если большее основание трапеции равно 8.
Задачу решили:
22
всего попыток:
24
Золотой треугольник и прямоугольный с острым углом 36° имеют равные по длине боковые стороны первого и гипотенузы второго треугольника. Чему равен катет, противолежащий углу 54°, если сумма длин основания и боковой стороны золотого треугольника равна 36.
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|