Лента событий:
vochfid добавил комментарий к задаче "Десятичная запись квадрата" (Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
110
всего попыток:
160
Сколькими способами можно расставить в ряд все десять цифр от 0 до 9 включительно так, чтобы сумма любых трёх из них, идущих подряд, не превышала 12?
Задачу решили:
145
всего попыток:
232
Какое наибольшее количество квадратов натуральных чисел можно написать, чтобы все написанные цифры были разными?
Задачу решили:
171
всего попыток:
282
От трёхзначного числа отняли сумму кубов его цифр. Какой наибольший результат мог при этом получиться?
Задачу решили:
77
всего попыток:
279
Даны четырёхугольник ABCD, в котором ΑΒ=25, BC=17, CD=26, DA=15; и ещё две точки: точка E на стороне AB и точка F на стороне CD такие, что AE=10, EB=15, CF=9 и FD = 17. Пусть K - точка пересечения отрезков AF и DE, L - точка пересечения отрезков EC и BF, M - точка пересечения отрезков AC и BD. Чему равен угол KML (в градусах, округляя до целого числа)?
Задачу решили:
269
всего попыток:
301
К простому числу p прибавили 400 и получили квадрат натурального числа. Найдите p.
Задачу решили:
199
всего попыток:
325
Маша и Саша лакомятся изюмом. Маша съедает одну изюминку, Саша — 2, Маша — 3, Саша — 4 и т.д. (Следующий берёт на одну изюминку больше.) Сколько всего было изюминок, если Маша съела ровно 200?
Задачу решили:
101
всего попыток:
249
Чтобы отправить по почте письмо, используя только 8 и 15-центовые марки, обязательно придётся переплатить. Какое наибольшее число центов может составлять цена отправки этого письма без переплаты?
(Канадская математическая олимпиада)
Задачу решили:
176
всего попыток:
288
На шахматной доске 8×8 проведена прямая линия, не проходящая через углы клеток. Какое наибольшее число клеток она может пересекать?
Задачу решили:
235
всего попыток:
280
Найдите самое маленькое натуральное число, имеющее сумму цифр 17, оканчивающееся на 17 и кратное 17.
Задачу решили:
269
всего попыток:
525
У нас 4 монеты. Две из них — по 15 грамм, две другие — по 16. Ещё есть чашечные весы со стрелкой, показывающие разность масс грузов, положенных на чашки. За какое наименьшее число взвешиваний можно гарантированно найти хотя бы одну монету в 16 грамм?
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|