Лента событий:
Lec добавил комментарий к задаче "Десятичная запись квадрата" (Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
28
всего попыток:
29
Из середины сторон треугольника АВС с углами 40°, 60°, 80° проведены перпендикуляры к двум другим сторонам, которые при пересечении образуют шестиугольник внутри. Найти отношение площади шестиугольника к площади треугольника.
Задачу решили:
28
всего попыток:
30
На сторонах единичного квадрата отметили точки A, B, C и D так, что прямая АС параллельна двум сторонам квадрата, а прямая BD - двум другим сторонам квадрата. Отрезок АВ отсекает от квадрата треугольник периметра 1. Треугольник какой площади отсекает от квадрата отрезок CD?
Задачу решили:
26
всего попыток:
32
Найти площадь треугольника, у которого радиусы вписанной и описанной окружностей равны соответственно 24 и 50, синус одного из углов равен 0,96.
Задачу решили:
28
всего попыток:
29
В равностороннем треугольнике АВС с длиной стороны равной 14 проведен отрезок DE, где D - середина стороны АС, Е - точка на стороне АВ так, что угол ADE=75°. Далее из точки Е проведен перпендикуляр к стороне АВ до пересечения со стороной ВС в точке F. Найти периметр треугольника BEF.
Задачу решили:
30
всего попыток:
38
В окружности с центром O построен правильный шестиугольник KOFPDL так, что его вершина D лежит на окружности. Из точки B, диаметрально противоположной точке D, проведены две хорды AB и BC, проходящие через вершины K и F шестиугольника соответственно. Найти отношение площади шестиугольника KOFPDL к площади четырехугольника ABCD.
Задачу решили:
30
всего попыток:
32
Равносторонний треугольник средними линиями разбит на 4 подобных треугольников,вершины которых обведены в кружочки. Ваня написал в кружочки различные цифры, а внутри каждого треугольника сумму или произведение трех цифр,относящихся к вершинам соответственно к нему. Затем стер цифры в кружочках, числа в треугольниках: 3, 13, 14, 15. Число 14- в среднем треугольнике. Найти наименьшее шестизначное число из стертых цифр.
Задачу решили:
22
всего попыток:
26
Если стороны треугольника равны a, b, c, и радиусы вписанной и описанной окружностей равны r и R, то выражение: Обозначим:
Задачу решили:
24
всего попыток:
67
Прямоугольный треугольник с гипотенузой длиной 37 имеет целочисленный периметр. Найти наименьшую целочисленную площадь.
Задачу решили:
30
всего попыток:
42
Найти минимальное натуральное число, которое имеет ровно 100 натуральных делителей, включая 100.
Задачу решили:
25
всего попыток:
35
Треугольник со стороной 19 и двумя прилежащими к ней углами, один из которых в два раза больше другого, имеет целочисленные стороны. Найти отношение суммы длин двух неизвестных сторон к длине известной стороны.
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|