Лента событий:
Lec добавил комментарий к задаче "Десятичная запись квадрата" (Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
38
всего попыток:
377
На рисунке ноль имеет 2 квадратика касающихся квадратиков следующей цифры – единицы. Единица имеет 3 квадратика касающихся квадратиков соседних цифр. Цифра 2 имеет 4 квадратика касающихся квадратиков соседних цифр и т.д. Девятка имеет 4 квадратика касающихся квадратиков цифры 8. Если значение каждой цифры умножить на число квадратиков касающихся квадратиков других цифр и сложить эти произведения, получим: 0·2+1·3+2·4+3·6+4·7+5·8+6·5+7·6+8·9+9·4=277. Переставить цифры не переворачивая их так, чтобы получить максимальную сумму. Ответом является полученная сумма. Число может начинаться с нуля, накладывать цифры друг на друга и выдвигать по вертикали нельзя.
Задачу решили:
93
всего попыток:
374
В компании ровно у одного — один друг, ровно у одного — два друга и т.д. до пяти. Какое наименьшее число людей может быть в такой компании?
Задачу решили:
106
всего попыток:
124
В организации каждая женщина знакома с 32 мужчинами, а каждый мужчина — с 29 женщинами. Найдите отношение числа женщин к числу мужчин.
Задачу решили:
61
всего попыток:
95
Число 3 можно представить в виде суммы двух и более натуральных чисел таким образом: 1+2, 2+1 и 1+1+1. Сколько существует таких способов для числа 100?
Задачу решили:
67
всего попыток:
110
Найдите количество 7-значных чисел, состоящих из цифр 1, 2 и 3 и имеющих сумму цифр равную 10.
Задачу решили:
54
всего попыток:
87
В классе 16 учеников. Каждый месяц учитель делит класс на две группы. Какое наименьшее количество месяцев должно пройти, чтобы любые два ученика в какой-то из месяцев оказались в разных группах?
Задачу решили:
44
всего попыток:
76
В кубе со стороной 100 см вложили 9 шаров одинакового размера так, что один шар находится в центре куба, а каждый остальной касается его и еще ровно трех поворхностей куба. Найдите радиус шара. Ответ округлите до ближайшего целого числа.
Задачу решили:
39
всего попыток:
86
Имеется 1000 неокрашенных кубиков одного размера. Каждую грань этих кубиков можно покрасить одним цветом по своему усмотрению. Играя с этими кубиками можно сложить куб 10х10х10, поверхность которого полностью красная. Переложив кубики, можно сложить куб 10х10х10, поверхность которого полностью синяя, и т.д. Какое наибольшее число одноцветных кубов 10х10х10 различных по цвету можно сложить из этого набора.
Задачу решили:
37
всего попыток:
60
В стандартном комплекте домино 28 костяшек с числами от 0 до 6. Прикладывая костяшки этого комплекта друг к другу по правилам домино, можно сложить фигуру, изображенную на рисунке. При этом можно добиться того, чтобы сумма всех чисел в каждой из пяти рамок была одной и той же. Чему равна эта сумма?
Задачу решили:
37
всего попыток:
99
Чему равно наименьшее количество равных правильных шестиугольников, которыми можно оклеить без наложений и просветов правильный тетраэдр?
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|