Лента событий:
Lec добавил комментарий к задаче "Десятичная запись квадрата" (Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
40
всего попыток:
50
Сколько существует натуральных пятизначных чисел, которые заканчиваются на 6 и делятся на 3?
Задачу решили:
38
всего попыток:
47
Три различных натуральных числа таковы, что сумма обратных к ним величин тоже целое число. Найдите максимально возможную сумму исходных чисел.
Задачу решили:
37
всего попыток:
43
В выражении DONALD+GERALD = ROBERT каждой букве соответствует одна цифра от 0 до 9. Известно, что D=5. В качестве ответа запишите все цифры буквами в порядке от 0 до 9.
Задачу решили:
31
всего попыток:
80
Одинокий тополь в Калмыкии, а также шестилепестковые тюльпаны являются символами Республики. В числовом ребусе
Задачу решили:
29
всего попыток:
30
В десятичной записи квадрата некоторого числа, содержащей более одного знака, число десятков равно 7. Какой цифрой заканчивается квадрат этого числа?
Задачу решили:
27
всего попыток:
28
На шахматной доске 8×8 проведена прямая линия. Какое максимальное число клеток она может пересекать?
Задачу решили:
27
всего попыток:
30
Имеется 14 кубиков: два кубика с числом 1, два кубика с числом 2, два кубика с числом 3 и так далее, два кубика с числом 7. Расположите эти кубики в ряд так, чтобы между кубиками с числом 1 был ровно 1 кубик, между кубиками с числом 2 было ровно 2 кубика, и так далее, между кубиками с числом 7 было ровно 7 кубиков. Построенное решение определяет 14-значное число, записанное цифрами от 1 до 7. Поскольку кубики можно расставить несколькими способами, то в ответе укажите наименьшее 14-значное число, соответствующее полученному решению. Для примера, на рисунке показано решение для 8 кубиков с числами от 1 до 4 и число 23421314, соответствующее этому решению.
Задачу решили:
23
всего попыток:
36
На рисунке слева показан пример умножения двух трехзначных чисел 504 и 463. Он записан с отображением промежуточных произведений. На рисунке справа этот же пример записан с использованием 12 костяшек домино. Найдите другой пример умножения двух многозначных чисел, записанный в таком же формате, причем каждый множитель должен содержать хотя бы по две ненулевых цифры, промежуточные нулевые произведения не записываются и не учитываются. В ответе укажите наименьшее возможное число костяшек. В задаче используется стандартный набор домино, в котором 28 костяшек домино.
Задачу решили:
39
всего попыток:
53
В записи 30?0?03 вопросительные знаки заменили на цифры и получили число, которое стало делиться на 13 нацело. Найдите сумму всех чисел, которые могли получиться.
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|