Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
24
всего попыток:
29
Найдите наибольшее натуральное число, которое в 9 раз больше своего остатка от деления на 1024.
Задачу решили:
18
всего попыток:
20
Учительница написала на доске трехзначное число АНА, и каждому ученику раздала по карточке, с двумя разными цифрами n и m, все четыре натуральных числа A, H, m и n - различны. Девочек она попросила найти значения выражения An + Hm + An, а мальчиков попросила найти значение выражения Am + Hn + Am. Выполнив задание, ученики удивились, потому что и у девочек, и у мальчиков получилось одно и тоже число. Какое наибольшее число АНА учительница могла написать на доске? Светлая память Анне Николаевне Андреевой, учителю математики и нашей коллеге на Диофанте.ру с ником xyz, позже AnnaAndreeva.
Задачу решили:
22
всего попыток:
22
Сумма двух чисел равна 2024, если к первому числу справа дописать 1, а во втором убрать последнюю цифру 5, то в сумме новые числа дадут 2272. Найдите наибольшее из исходных чисел.
Задачу решили:
25
всего попыток:
25
В пятизначном числе зачеркнули одну цифру и сложили получившееся число с исходным. В результате получилось 54321. Найдите исходное число.
Задачу решили:
23
всего попыток:
27
Вовочка из натурального ряда от 1 до 2024 сначала вычеркнул первое, третье, пятое числа. Из оставшегося ряда он снова вычеркнул первое, третье, пятое. Он занимался этим до конца урока, пока не осталось единственное невычеркнутое число. Какое число осталось?
Задачу решили:
26
всего попыток:
26
Вовочка из натурального ряда от 1 до 2024 сначала вычеркнул первое, третье, пятое и так далее числа. Из оставшегося ряда он снова вычеркнул первое, третье, пятое и так далее числа. Он занимался этим до конца урока, пока не осталось единственное невычеркнутое число. Какое число осталось?
Задачу решили:
24
всего попыток:
33
Какое максимальное количество простых чисел можно записать, использовав каждую из десяти цифр от 0 до 9 ровно по одному разу?
Задачу решили:
21
всего попыток:
28
Найти сумму натуральных чисел n, которые можно представить в виде суммы n=a2+b2, где a — минимальный делитель n, отличный от 1, и b — какой-то делитель n.
Задачу решили:
22
всего попыток:
23
(√15 + √21 + √25 + √35)/(√3 + √7 + √20)=(√a + √b)/2, где a и b - натуральные числа. Найдите их сумму.
Задачу решили:
21
всего попыток:
28
Взаимно простые целые числа x, y и z удовлетворяют следующим условиям: x2+y2+z2=2xy+2yz+2zx 0<z<y<x<12345 Найти наибольшее значение x.
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|