Лента событий:
solomon
добавил
комментарий к решению задачи
"Прямоугольник на 4 части" (Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
38
всего попыток:
60
В равнобедренном треугольнике ABC (|AB|=|BC|=10) перпендикуляр из вершины C к стороне AB пересекает её в точке D, |AD|=6. Перпендикуляр из точки D к стороне AC пересекает её в точке E. Найти |BE|. Ответ укажите округлив до второго знака после запятой.
Задачу решили:
28
всего попыток:
60
В кружках фигуры расставлены числа от 1 до 13. Переставьте несколько чисел так, чтобы суммы четырех чисел, расположенных в кружках-вершинах всех квадратов (убедитесь, что их 11), были равными. В ответе укажите наименьшее количество переставленных чисел.
Задачу решили:
46
всего попыток:
57
Найдите сумму всех трехзначных простых чисел, состоящих из разных цифр, в которых последняя цифра равна сумме двух первых.
Задачу решили:
42
всего попыток:
48
Найдите действительные значения неизвестных x, y, z из системы уравнений: В ответе укажите значение отношения x/y.
Задачу решили:
30
всего попыток:
52
В остроугольном треугольнике АВС с целочисленными сторонами наименьшего периметра угол ВАС в два раза больше угла АВС. Найти длину стороны ВС.
Задачу решили:
39
всего попыток:
43
Из пункта А и пункта В навстречу друг другу отправились двое, имеющие оба четное значение скоростей (км/час) и встретились через 8 часов. Если бы один из них увеличил свою скорость на 14%, а второй на 15%, они встретились бы через 7 часов. Найти наименьшее расстояние между пунктами А и В в км.
Задачу решили:
24
всего попыток:
56
Сколькими способами можно расположить 4 точки на плоскости таким образом, что все расстояния между любыми двумя имели ровно два различных значения?
Задачу решили:
33
всего попыток:
41
Найдите наибольшее четырехзначное простое число из разных цифр кроме нуля, у которого сумма всевозможных двузначных чисел с использованием его цифр равна 484.
Задачу решили:
15
всего попыток:
74
Квадрат 3×3 можно заполнить числами от 1 до 9 магическим образом, т. е. так, что суммы чисел по столбцам, строкам и диагоналям равны - это число называется магической суммой. Можно также подобрать девять различных натуральных чисел, обратными к которым можно заполнить квадрат магическим образом так, что магическая сумма будет равна 1/N. Найдите минимально возможное натуральное N. В качестве решения укажите все подобранные числа.
Задачу решили:
36
всего попыток:
47
Найдите минимальную длину отрезка, который содержит все решения неравенства:
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|