Лента событий:
solomon
добавил
комментарий к решению задачи
"Прямоугольник на 4 части" (Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
22
всего попыток:
59
Найти наименьшее число, содержащее все цифры от 0 до 9 по паре и делящееся на 2020.
Задачу решили:
25
всего попыток:
76
Выпуклый четырехугольник, у которого три стороны равны между собой образуют два смежных угла в сумме 240º. Отношение сумм противоположных углов составляет 11:19. Найти наименьший угол четырехугольника в градусах.
Задачу решили:
27
всего попыток:
38
Чему равна наибольшая разность двух десятизначных чисел кратных 17 с различными цифрами в десятичной системе?
Задачу решили:
21
всего попыток:
70
На боковой стороне равнобедренного треугольника АВС (АС - основание) с целочисленными сторонами отмечена точка D так, что перпендикуляр DE, опущенный на вторую боковую сторону, делит треугольник на две равновеликие части. Найти наименьший периметр треугольника АВС, если длина ВD - целое число и отношение длины основания к длине боковой стороны меньше единицы.
Задачу решили:
27
всего попыток:
61
На доске написаны числа 2, 3, 4, ..., 2019, 2020. За рубль можно отметить любое число. Если какое-то число уже отмечено, можно бесплатно отмечать его делители и числа, кратные ему. За какое наименьшее число рублей можно отметить все числа на доске?
Задачу решили:
32
всего попыток:
50
Четыре действительных числа x1, x2, x3, x4 таковы, что каждое число, сложенное с произведением остальных, равно 2. Сколько различных таких четвёрок существует?
Задачу решили:
32
всего попыток:
32
Найдите сумму всех целых положительных чисел n таких, что произведение цифр в десятичной записи которых равно n2-10n-22.
Задачу решили:
18
всего попыток:
19
Докажите существование выпуклого 5-угольника, у которого длины сторон 44, 38, 30, 21, 13, согласно последовательному расположению "по кругу".
Задачу решили:
44
всего попыток:
48
Существует загадочное 10-значное десятичное число abcdefghij такое, что все его цифры разные, и они обладают следующими свойствами:
Какое это число?
Задачу решили:
7
всего попыток:
53
Поверхность куба разрезать на минимальное число частей так, чтобы ими оклеить без наложений и просветов два равных куба. Чему равно это число?
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|