Лента событий:
TALMON
добавил комментарий к задаче
"Целочисленные точки на эллипсах - 3"
(Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
30
всего попыток:
48
Найдите количество действительных решений системы уравнения:
Задачу решили:
6
всего попыток:
26
На плоскости можно провести несколько прямых так, что они, пересекаясь друг с другом, образуют несколько не перекрывающихся пятиконечных звезд, употребив при этом наименьшее число прямых. Например, рисунке показано, как 1 звезду нарисовать 5 прямыми, 3 звезды нарисовать 8 прямыми, как 3 звезды нарисовать 9 прямыми. Как нарисовать 7 звезд проведя наименьшее число прямых? В ответе укажите число прямых. Важно учитывать, что в предложенной конструкции при продолжении прямых не должны появляться новые звезды.
Задачу решили:
23
всего попыток:
27
Различные числа а, b, c таковы, что уравнения x2+ax+1=0 и x2+bx+c=0 имеют общий действительный корень. Кроме того, уравнения x2+x+a=0 и x2+cx+b=0 тоже имеют общий действительный корень. Найти сумму a+b+c.
Задачу решили:
17
всего попыток:
24
Квадрат имеет сторону длины n, n∈N. Все стороны квадрата разделены точками на единичные отрезки. В этот квадрат вписаны n-1 квадратов, все вершины которых находятся в точках деления. При этом исходный квадрат оказался разделен на части. Для каких простых чисел n, начиная с 2 и не превосходящих 100, число полученных частей в квадрате является простым? В ответе укажите сумму всех таких n. На рисунке приведен квадрат со стороной 4, в который вписаны 3 меньших квадрата.
Задачу решили:
20
всего попыток:
27
Показывая текущее время в часах и минутах, цифры на табло электронных часов могут располагаться строго по возрастанию, например, 0:45 или строго по убыванию, например, 8:30. Посчитайте в течение суток число различных показаний в обоих случаях. В ответе запишите отношение меньшего числа к большему.
Задачу решили:
27
всего попыток:
32
Пусть p и q такие натуральные числа, что уравнения x2-px+q=0 и x2-qx+p=0 имеют неравные целочисленные корни. Найти количество таких различных упорядоченных пар (p, q).
Задачу решили:
34
всего попыток:
38
Число 169=132=122+52. Но интересно, что 1692 - тоже равно сумме квадратов двух натуральных взаимно простых чисел. Найдите наибольшее из них.
Задачу решили:
26
всего попыток:
46
Условия приобретения покупки: Чему равна собственная стоимость покупки в копейках, если рассрочка дается из 5% годовых. (Округление числа по правилам арифметики).
Задачу решили:
34
всего попыток:
37
На большой пикник в загородную местность отправилась группа участников на автомобилях по 4 человека в каждом. В середине пути ввиду поломки нескольких автомобилей по одному человеку рассадили в оставшиеся автомобили. На обратном пути ввиду поломки количества автомобилей,превышающего на один прежнего количества неисправных автомобилей, по два человека рассадили в оставшиеся автомобили. Сколько всего участников?
Задачу решили:
29
всего попыток:
53
Поток студентов пять раз сдавал один и тот же зачет (не сумевшие сдать зачет приходили на следующий день). Каждый день успешно сдавали зачет треть всех пришедших студентов и ещё треть студента. Каково наименьшее число студентов, так и не сдавших зачет за пять раз?
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|