Лента событий:
Kf_GoldFish добавил комментарий к задаче "Целочисленные точки на эллипсах - 2" (Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
108
всего попыток:
166
Число 2003/(2^2003) записано в виде конечной десятичной дроби. Какая цифра у него стоит на четвертом месте с конца?
Задачу решили:
85
всего попыток:
155
Число назовем хорошим, если оно 20-значное и любое другое 20-значное число с такой же суммой цифр больше него. Сколько существует хороших чисел?
Задачу решили:
37
всего попыток:
74
Известно, что a1 < a2 < ... < a2014 простые числа и a12+a22+...+a20142 делится на 2015. Найти минимально возможное a1.
Задачу решили:
81
всего попыток:
126
m и n - целые числа такие, что m2=n2+8n-3. Найдите сумму всех таких возможных n.
Задачу решили:
49
всего попыток:
99
Найти сумму всех возможных значений k таких, что 2k+3m+1=6n, все k, m и n - целые.
Задачу решили:
52
всего попыток:
127
Пусть множество S такое, что: 1) 2 принадлежит S 2) если n принадлежит S, то и n+5 принадлежит S 3) если n принадлежит S, то и 3n принадлежит S. Найдите максимальное n из S меньшее 2009.
Задачу решили:
53
всего попыток:
58
Вася, начиная с 1000-го года, начал извлекать кубические корни числовых значений годов и обнаружил год, кубический корень которого имеет первые 10 различных цифр. Какой был этот год, если известно,что Вася именно в том году занимался этой арифметикой.
Задачу решили:
44
всего попыток:
93
Вычеркните из произведения 1!·2!·3!·...·200! один из факториалов, то есть множитель вида k!, так, чтобы произведение оставшихся было квадратом целого числа. В ответе укажите наименьшее значение k.
Задачу решили:
24
всего попыток:
51
Натуральные числа от 1 до n расставлены по кругу (без повторов) так, что сумма любых двух соседних чисел равна точному квадрату. При каком наименьшем значении n такая расстановка возможна? Для примера, на рисунке приведена расстановка чисел при n=15, в которой сумма любых двух соседних чисел является квадратным числом, кроме лишь одной, выделенной красным отрезком.
Задачу решили:
34
всего попыток:
38
Число 169=132=122+52. Но интересно, что 1692 - тоже равно сумме квадратов двух натуральных взаимно простых чисел. Найдите наибольшее из них.
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|