img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
отражение
Лента событий: Lec добавил комментарий к задаче "Десятичная запись квадрата" (Математика):
Рисунок
Rss

Задачи: Математика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 77
всего попыток: 91
Задача опубликована: 23.09.11 08:00
Прислал: TALMON img
Источник: Задача 628
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: leonid (Леонид Шляпочник)

В окружность вписан четырёхугольник ABCD. Прямые AB и CD перпендикулярны. Диагонали: AC=80 и BD=39. Найдите диаметр окружности.

Задачу решили: 65
всего попыток: 100
Задача опубликована: 10.10.11 08:00
Прислал: demiurgos img
Источник: Всероссийская олимпиада
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: Sam777e

Вписанный в окружность 2011-угольник разрезали на треугольники вдоль не пересекающихся внутри него диагоналей. Найдите наибольшее число прямоугольных треугольников.

+ 21
+ЗАДАЧА 661. Города (И.И. Богданов)
  
Задачу решили: 63
всего попыток: 85
Задача опубликована: 18.11.11 08:00
Прислал: admin img
Источник: Турнир городов
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100

В некой стране 100 городов (города считайте точками на плоскости). В справочнике для каждой пары городов имеется запись, каково расстояние между ними (всего 4950 записей).
Пусть стерлись k записей, и известно, что в этой стране никакие три города не лежат на одной прямой. При каком наибольшем k всегда можно однозначно восстановить стершиеся записи?

+ 24
  
Задачу решили: 104
всего попыток: 140
Задача опубликована: 21.11.11 08:00
Прислал: admin img
Источник: Турнир городов
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: Volga (Xxx Xxx)

Равнобокая трапеция, описанная около окружности, делится биссектрисой тупого угла на 2 части так, что отношение площадей - целое число. Найдите это число. 

Задачу решили: 88
всего попыток: 146
Задача опубликована: 25.11.11 08:00
Прислал: Volga img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: Sam777e

Точка E находится на расстоянии 883·√2 и 37·√2 от вершин А и С квадрата ABCD соответственно, причем угол AEC - прямой, точка Е лежит слева от прямой CD. 

math664.jpg

Найдите расстояние от точки Е до вершины B.

Задачу решили: 56
всего попыток: 130
Задача опубликована: 02.12.11 08:00
Прислал: admin img
Источник: Турнир городов
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: Timur

Через начало координат проведены прямые (включая оси координат), которые делят координатную плоскость на углы в 2°. Найдите сумму абсцисс точек пересечения этих прямых с прямой y = 100 − 2x. Ответ округлите до ближайшего целого.

Задачу решили: 98
всего попыток: 134
Задача опубликована: 12.12.11 08:00
Прислал: Yhlas img
Источник: Зарубежные математические олимпиады
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: zhekas (Евгений Сыромолотов)

x≥0,, y≥0, z≥0, u≥0.

2х+ху+z+yzu=1. Найти max(x2y2z2u).

Задачу решили: 186
всего попыток: 212
Задача опубликована: 19.12.11 08:00
Прислал: Yhlas img
Источник: Зарубежные математические олимпиады
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: Sam777e

Решите уравнение

8x(3x+1)=4

Задачу решили: 75
всего попыток: 141
Задача опубликована: 01.01.12 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: nellyk

Из точки P внутри треугольника ABC на его стороны опущены перпендикуляры PD, PE, PF. Известно, что величина угла A равна 60°, угла B - 30°, длина стороны AB равна 8 см. Найти наибольшее значение, которое может принимать выражение PD2 + PE2 + PF2.

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.