Лента событий:
Lec добавил комментарий к задаче "Десятичная запись квадрата" (Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
24
всего попыток:
35
Прямоугольник и квадрат, у которых совпадает одна из диагоналей, расположены так, что прямоугольник делит своими двумя параллельными сторонами две параллельные стороны квадрата в отношении 1:3. Найти площадь квадрата, если известно, что она является целым числом, площадь прямоугольника равна 14.
Задачу решили:
25
всего попыток:
29
В квадрате ABCD точка М лежит на стороне ВС, а точка N - на стороне АВ. Прямые АМ и DN пересекаются в точке О. Найти площадь квадрата, если известно, что |DN|=4, |AM|=3, а косинус угла AOD=0.6.
Задачу решили:
21
всего попыток:
28
Четыре круга с различными целочисленными диаметрами D, D1, D2, D3 таковы, что D=D1 + D2 + D3. Для площадей этих кругов справедливо равенство S=2*(S1 + S2 + S3). Найти наименьший D.
Задачу решили:
21
всего попыток:
28
В день своего 18-летия Таня нарисовала выпуклый 18-угольник, каждый угол которого кратен 18 градусам.
Задачу решили:
27
всего попыток:
28
В треугольнике АВС проведена биссектриса СL. Найдите значение выражения 1/|АС| + 1/|ВС|, если |СL| = 5, cos AСB = 1/8 и cos ALС = 1/7.
Задачу решили:
27
всего попыток:
30
Внутри ожерелья из 8-и одинаковых жёлтых правильных 8-угольников заключён зелёный равносторонний 16-угольник, как показано на рисунке. Найдите квадрат отношения площади одного жёлтого 8-угольника к площади зелёного 16-угольника.
Задачу решили:
25
всего попыток:
30
В треугольнике АВС медиана AM разделена на три равных отрезка вписанной окружностью. Найти периметр треугольника, если |АВ|=5.
Задачу решили:
24
всего попыток:
25
Определить сумму всех натуральных чисел x, для которых число 1 + x + x2 + x3 + x4 + x5 + x6 + x7 является степенью простого числа.
Задачу решили:
10
всего попыток:
11
Дан треугольник ABC. Точка J - это центр окружности, которая касается стороны BC и продолжений сторон AB и AC. Точки P, B, C, Q лежат в этой последовательности на одной прямой, причём |PB| = |AB| и |QC| = |AC|. Найти сумму углов BAC и QJP в градусах.
Задачу решили:
13
всего попыток:
29
Рассмотрим замкнутую цепочку из m правильных n-угольников, центры которых являются вершинами правильного m-угольника. Каждые два соседних n-угольника имеют одну общую сторону. Другие k стороны каждого n-угольника находятся целиком внутри m-угольника, образуя в совокупности равносторонний m*k-угольник (на изображении примера для n=10, k=2, m=5 он покрашен в красный цвет): Заметим, что не всегда удаётся замкнуть цепочку. Найдите количество троек {n, k, m}, для которых существуют замкнутые цепочки, в пределах 4 < n < 13, k>0.
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|