img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
отражение
Лента событий: Lec добавил комментарий к задаче "Десятичная запись квадрата" (Математика):
Рисунок
Rss

Задачи: Математика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 39
всего попыток: 115
Задача опубликована: 17.08.12 08:00
Прислал: TALMON img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: nellyk

Рассмотрим монотонно возрастающую последовательность всех натуральных чисел, которые являются суммой цифр квадрата хотя бы одного натурального числа (в десятичной системе счисления).

Чему равен миллионный член этой последовательности?

Задачу решили: 48
всего попыток: 355
Задача опубликована: 22.08.12 08:00
Прислал: Dremov_Victor img
Источник: Корейская математическая олимпиада
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: Sam777e

На экзамене 16 школьников решали 30 задач. Каждый ученик верно решил не более 15 задач, а каждую задачу решило не менее 8 школьников. При этом для любой пары школьников количество задач, решенных ими обоими, одинаково и равно n. Найдите n.

Задачу решили: 67
всего попыток: 101
Задача опубликована: 26.08.12 08:00
Прислал: georgp img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: Dremov_Victor (Виктор Дремов)

Известно, что 12x1+22x2+32x3+...+2002 x200≤2040000, где x1,  x2,  x3 ,…. X200 принимают значения 0 или 1. 

Найти максимальное значение 12x1+22x2+32x3+...+2002 x200.

Задачу решили: 70
всего попыток: 119
Задача опубликована: 17.09.12 08:00
Прислала: allanick img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: Vkorsukov

В прямоугольном треугольнике ABC с прямым углом при вершине А, биссектриса прямого угла пересекает гипотенузу BC в точке D, так что DAB = 45°.  Если CD = 1 и BD = AD + 1,  найти длину AD.

m111_.png

 

Ответ представить в виде целого числа, умножив результат на 1000 и  округлив до ближайшего целого.

Задачу решили: 46
всего попыток: 60
Задача опубликована: 28.09.12 08:00
Прислал: OlegSha img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: Timur

В остроугольном треугольнике ABC угол которого \angle A = \frac{\pi}{4}, внутри отрезков AB и AC можно выбрать две точки D и E так, что BD=CE=BC. Найдите длину отрезка DE, если квадрат расстояния между центрами вписанной и описанной окружностей треугольника ABC d^2=72962.

Задачу решили: 43
всего попыток: 281
Задача опубликована: 03.10.12 08:00
Прислал: Dremov_Victor img
Источник: Корейская математическая олимпиада
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: Angelina

Пусть f(x) = x^2 -10x + \frac{p}{2}. Найдите такое натуральное p, что уравнение f \circ f \circ f (x) = f(x) имеет ровно 4 различных действительных решения.

Задачу решили: 179
всего попыток: 282
Задача опубликована: 08.10.12 08:00
Прислал: kolkingen img
Источник: Кенгуру-задачник
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: levvol

На углу дома, размеры которого - 6 метров на 4 метра, привязана собака. Длина привязи - 10 метров.

dog.jpg

Какова площадь участка доступного собаке?

Число ∏ (Пи) округлить до 3.

Задачу решили: 80
всего попыток: 117
Задача опубликована: 17.10.12 08:00
Прислал: kolkingen img
Источник: Кенгуру-задачник
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: bbny

После войны один из полков солдат построили на площади в форме прямоугольника. И 1% от этих солдат были награждены за отвагу. Причем, солдаты, получившие награды, точно встречаются в 30% рядов и в 40% колонн. Какое наименьшее количество солдат может быть в этом полку?

Задачу решили: 65
всего попыток: 105
Задача опубликована: 19.10.12 08:00
Прислал: Dremov_Victor img
Источник: Корейская математическая олимпиада
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: zmerch

Для натуральных чисел a, b, c справедливо равенство


\cfrac{a^3}{(b + 3)(c + 3)} + 
\cfrac{b^3}{(c + 3)(a + 3)} + 
\cfrac{c^3}{(a + 3)(b + 3)} = 7.

 

Найдите значение a + b + c.

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.