img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
отражение
Лента событий: vochfid добавил комментарий к задаче "Десятичная запись квадрата" (Математика):
Рисунок
Rss

Задачи: Математика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 67
всего попыток: 101
Задача опубликована: 21.12.12 08:00
Прислал: Timur img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: nellyk

Найдите минимальное натуральное число k такое, что при любых натуральных n, значение многочлена P(n)=7·n37+37·n7+4·k·n - делится на 259 без остатка.

Задачу решили: 33
всего попыток: 148
Задача опубликована: 04.01.13 08:00
Прислал: Timur img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100

1123.jpg

Рассмотрим полуокружность с центром в точке O и радиусом |AO|=|OB|=17. Внутри отрезка OB произвольным образом выбираем точку C при этом |AO|<|AC|<|AB|. С центром в точке C и радиусом |CB|=|CD| построим еще одну полуокружность. Через точку D проведем прямую, перпендикулярную прямой AB и пересекающуюся с большой полуокружностью в точке D'. В фигурный сектор DD'B вписана окружность с центром в точке I и касающаяся прямой DD' и обеих полуокружностей в точках H, G и F соответственно. (см. рис.)

Проведем прямую через точки С и I, которая пересекается с прямой DD' в точке E. Найдите все возможные случаи, когда длина отрезка |CE| - целое число. В ответ введите сумму найденных вариантов.

Задачу решили: 66
всего попыток: 203
Задача опубликована: 09.01.13 08:00
Прислал: Vkorsukov img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: volinad (Владимир Алексеевич Данилов)

Все нечётные числа кратные 99 и в записи которых могут присутствовать только цифры 0, 1 и 2, выписаны в порядке возрастания. Найдите шестое число полученного ряда.

 

Задачу решили: 65
всего попыток: 106
Задача опубликована: 18.01.13 08:00
Прислал: Timur img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: leonid (Леонид Шляпочник)

Для данной функции f(x)=\frac{2013^{2x}}{2013^{2x}+2013}., найдите сумму 

S=\sum\limits_{k=1}^{2013} f(\frac{k}{2013}).

Задачу решили: 66
всего попыток: 95
Задача опубликована: 30.01.13 08:00
Прислал: Timur img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: Freeplay (Арсений Кузнецов)

112.jpg

На окружности с центром в т.O выбраны точки A и B так, что угол AOB=90°. На бОльшей дуге AB произвольным образом выбрана точка С (будем считать, что B и С лежат по одну сторону от прямой AO) через которую проведена касательная к нашей окружности. Из точек A и B проведены перпендикуляры к  этой касательной, пересекающие ее в точках D и E соответственно. Причем оказалось, что |AD|=686, а |BE|=252. Найдите радиус окружности |AO|.

Задачу решили: 68
всего попыток: 91
Задача опубликована: 04.02.13 08:00
Прислал: mckoy img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg

Решить уравнение

sqrt(1+{2x})=[x2]+2[x]+3

[x] - наибольшее целое число, которое не превышает х. {x}=x-[x]

В ответе указать произведение всех возможных x.

Задачу решили: 61
всего попыток: 105
Задача опубликована: 08.02.13 08:00
Прислал: TALMON img
Источник: Израильский форум математики сайта "Апельсин"...
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: Hasmik33

Назовём число "зелёным", если его можно представить как сумму последовательных (не меньше двух) натуральных чисел.

Сколько существует не зелёных чисел между 10000 и 100000 включительно?

Задачу решили: 70
всего попыток: 134
Задача опубликована: 04.03.13 08:00
Прислал: Shama img
Источник: Олимпиада Физтех-2013
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: Sam777e

В большую коробку положили 20 коробок поменьше. В некоторые из вложенных коробок положили по 20 еще поменьше. В некоторые из этих опять положили по 20, и т.д. После этого ровно 1000 коробок оказалось с содержимым. Какое наибольшее число коробок при этом может быть пустыми?

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.