img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
отражение
Лента событий: Lec добавил комментарий к задаче "Десятичная запись квадрата" (Математика):
Рисунок
Rss

Задачи: Математика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 31
всего попыток: 50
Задача опубликована: 21.12.16 08:00
Прислал: admin img
Вес: 3
сложность: 1 img
класс: 8-10 img
баллы: 100

Гидры состоят из голов и шей (любая шея соединяет ровно две головы). Одним ударом меча можно снести все шеи, выходящие из какой-то головы A гидры. Но при этом из головы A мгновенно вырастает по одной шее во все головы, с которыми A не была соединена. Геракл побеждает гидру, если ему удастся разрубить ее на две несвязанные шеями части. Найдите наименьшее N, при котором Геракл сможет победить любую стошеюю гидру, нанеся не более, чем N ударов.

Задачу решили: 47
всего попыток: 62
Задача опубликована: 20.01.17 08:00
Прислал: TALMON img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: kazak1952

На стороне AB треугольника ABC находится точка D. На стороне BC того же треугольника находится точка E. Продолжение отрезка DE пересекается с продолжением стороны AC в точке F (точка C находися между точками A и F). Дано: |AB| = 35, |BC| = 30, |CA| = 30, |BD| = 7, |BE| = 9. Найдите длину отрезка CF.

Задачу решили: 28
всего попыток: 29
Задача опубликована: 17.02.17 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: Marutand

Равнобедренный треугольник имеет угол напротив основания 20 градусов и длины сторон 1. Доказать без использования тригонометрии, что длина основания больше 1/3. 

Задачу решили: 29
всего попыток: 64
Задача опубликована: 15.03.17 08:00
Прислал: TALMON img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: levvol

У четырёх прямоугольников соотношения длин сторон: 1:a1, 1:a2, 1:a3, 1:a4, где a1 < a2 < a3 < a4. – натуральные числа. Углы между диагональю и большой стороной - соответственно равны α1, α2, α3, α4, при этом α1 + α2 + α3 + α4 = π/4. Сколько существует таких наборов натуральных чисел {a1, a2, a3, a4}?

Задачу решили: 43
всего попыток: 111
Задача опубликована: 17.03.17 08:00
Прислал: solomon img
Источник: Московская математическая олимпиада
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: volinad (Владимир Алексеевич Данилов)

В выпуклом четырехугольнике ABCD проведены диагонали AC и BD. |AB|=|BD|, угол ABC=136º, угол ADC=150º, угол BAC=30º. Найти значение угла BCD в градусах.

Задачу решили: 58
всего попыток: 96
Задача опубликована: 29.03.17 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: andervish (Андрей Вишневый)

В равнобедренном треугольнике ABC угол при вершине CAB расен 20°. Из вершин B и C провели прямые линии так, что угол MBC равен 60°, а угол NCB равен 70°.

Найдите угол MNC в градусах.

Задачу решили: 30
всего попыток: 75
Задача опубликована: 03.04.17 08:00
Прислал: solomon img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: volinad (Владимир Алексеевич Данилов)

На какое наибольшее количество частей можно шестью прямыми разрезать кольцо, у которого внутренняя часть представляет собой замкнутую выпуклую кривую, способную вписаться в неправильный многоугольник?

Задачу решили: 72
всего попыток: 88
Задача опубликована: 10.04.17 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: volinad (Владимир Алексеевич Данилов)

На сторонах треугольника достроены квадраты. Найти площадь шестиугольника с розовыми сторонами.

Задачу решили: 28
всего попыток: 52
Задача опубликована: 14.04.17 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100

Найти максимальное количество областей пересечений 2017 эллипсов.

Задачу решили: 24
всего попыток: 34
Задача опубликована: 03.05.17 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Темы: логикаimg
Лучшее решение: leonid (Леонид Шляпочник)

Имеются 4 внешне неотличимые монеты весом 1, 2, 3 и 4 грамма. За какое минимальное количество взвешиваний на чашечных весах без гирь можно определить вес каждой монетки?

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.