Лента событий:
fortpost решил задачу "Три числа и степени" (Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
26
всего попыток:
33
На стороне АВ правильного восьмиугольника ABCDEFGH во внешную сторону построен квадрат ABKL. Две диагонали HD и FC пересекаются в точке О. Найти угол LOK в градусах.
Задачу решили:
26
всего попыток:
32
Найти площадь треугольника, у которого радиусы вписанной и описанной окружностей равны соответственно 24 и 50, синус одного из углов равен 0,96.
Задачу решили:
30
всего попыток:
38
В окружности с центром O построен правильный шестиугольник KOFPDL так, что его вершина D лежит на окружности. Из точки B, диаметрально противоположной точке D, проведены две хорды AB и BC, проходящие через вершины K и F шестиугольника соответственно. Найти отношение площади шестиугольника KOFPDL к площади четырехугольника ABCD.
Задачу решили:
22
всего попыток:
26
Если стороны треугольника равны a, b, c, и радиусы вписанной и описанной окружностей равны r и R, то выражение: Обозначим:
Задачу решили:
30
всего попыток:
42
Найти минимальное натуральное число, которое имеет ровно 100 натуральных делителей, включая 100.
Задачу решили:
25
всего попыток:
35
Треугольник со стороной 19 и двумя прилежащими к ней углами, один из которых в два раза больше другого, имеет целочисленные стороны. Найти отношение суммы длин двух неизвестных сторон к длине известной стороны.
Задачу решили:
20
всего попыток:
60
Найдите количество натуральных чисел n, удовлетворяющих следующим условиям:
Задачу решили:
29
всего попыток:
38
Косинус вершинного угла равнобедренного треугольника равен 527/625. Найти отношение расстояния этой вершины до центра вписанной окружности к длине основания.
Задачу решили:
24
всего попыток:
26
В треугольнике из двух вершин проведены высоты, из третьей вершины биссектриса. Длины их относятся 3:6:4 (высота:высота:биссектриса). Найти угол в градусах при вершине, из которой проведена биссектриса.
Задачу решили:
20
всего попыток:
26
Две окружности разных радиусов касаются в точке А. От точки В на большой окружности проведена касательная к малой в точке С. Отрезок ВС при внешнем касании два раза больше, чем ВС при внутреннем касании. Найти отношение радиусов (r/R) малой и большой окружностей.
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|