img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
отражение
Лента событий: Lec добавил комментарий к задаче "Десятичная запись квадрата" (Математика):
Рисунок
Rss

Задачи: Математика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
+ 2
+ЗАДАЧА 1415. 4 синуса и 4 косинуса (В. Сендеров, Л. Ященко)
  
Задачу решили: 44
всего попыток: 57
Задача опубликована: 12.09.16 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: crazor (Дмитрий Мисерев)

Найти количество корней уравнения sin(sin(sin(sin(x))))=cos(cos(cos(cos(x)))).

Задачу решили: 44
всего попыток: 48
Задача опубликована: 28.09.16 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: Sam777e

В остроугольном треугольнике ABC точки A2, B2 и C2 - являются серединами высот AA1, BB1 и CC1. Найдите сумму углов B2A1C2, C2B1A2 и A2C1B2 в градусах.

Задачу решили: 38
всего попыток: 42
Задача опубликована: 30.09.16 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: Bulat (Миха Булатович)

Имеется три стопки монет. За один ход можно из одной стопки переложить одну монету в другую. За ход Вовочка зарабатывает количество монет, равное разнице числа монет в стопке, из которой берется монета и числа монет в которую перекладывается. Если разница отрицательная, то у Вовочки забирается соответствующая сумма, если не хватает, то можно делать ходы в долг.

В какой-то момент после перекладывания, все монетки оказались в первоначальных стопках. Какое максимальное количество монет мог заработать Вовочка?

Задачу решили: 36
всего попыток: 65
Задача опубликована: 17.10.16 08:00
Прислал: TALMON img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Темы: логикаimg
Лучшее решение: georgp

Внутри некоторого выпуклого 13-угольника нет ни одной точки, через которой проходят 3 (или больше) его диагоналей. Сколько всего точек пересечения диагоналей есть внутри этого многоугольника?

Задачу решили: 47
всего попыток: 62
Задача опубликована: 20.01.17 08:00
Прислал: TALMON img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: kazak1952

На стороне AB треугольника ABC находится точка D. На стороне BC того же треугольника находится точка E. Продолжение отрезка DE пересекается с продолжением стороны AC в точке F (точка C находися между точками A и F). Дано: |AB| = 35, |BC| = 30, |CA| = 30, |BD| = 7, |BE| = 9. Найдите длину отрезка CF.

Задачу решили: 28
всего попыток: 29
Задача опубликована: 17.02.17 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: Marutand

Равнобедренный треугольник имеет угол напротив основания 20 градусов и длины сторон 1. Доказать без использования тригонометрии, что длина основания больше 1/3. 

Задачу решили: 29
всего попыток: 64
Задача опубликована: 15.03.17 08:00
Прислал: TALMON img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: levvol

У четырёх прямоугольников соотношения длин сторон: 1:a1, 1:a2, 1:a3, 1:a4, где a1 < a2 < a3 < a4. – натуральные числа. Углы между диагональю и большой стороной - соответственно равны α1, α2, α3, α4, при этом α1 + α2 + α3 + α4 = π/4. Сколько существует таких наборов натуральных чисел {a1, a2, a3, a4}?

Задачу решили: 43
всего попыток: 111
Задача опубликована: 17.03.17 08:00
Прислал: solomon img
Источник: Московская математическая олимпиада
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: volinad (Владимир Алексеевич Данилов)

В выпуклом четырехугольнике ABCD проведены диагонали AC и BD. |AB|=|BD|, угол ABC=136º, угол ADC=150º, угол BAC=30º. Найти значение угла BCD в градусах.

Задачу решили: 58
всего попыток: 96
Задача опубликована: 29.03.17 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: andervish (Андрей Вишневый)

В равнобедренном треугольнике ABC угол при вершине CAB расен 20°. Из вершин B и C провели прямые линии так, что угол MBC равен 60°, а угол NCB равен 70°.

Найдите угол MNC в градусах.

Задачу решили: 30
всего попыток: 75
Задача опубликована: 03.04.17 08:00
Прислал: solomon img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: volinad (Владимир Алексеевич Данилов)

На какое наибольшее количество частей можно шестью прямыми разрезать кольцо, у которого внутренняя часть представляет собой замкнутую выпуклую кривую, способную вписаться в неправильный многоугольник?

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.