Лента событий:
vochfid добавил комментарий к задаче "Десятичная запись квадрата" (Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
37
всего попыток:
71
В треугольнике ABC биссектрисы углов B и C пересекают стороны AC и AB соответственно в точках D и E. Разность углов <ADE - <AED равна 60 градусов. Найти угол ACB в градусах.
Задачу решили:
37
всего попыток:
58
Пусть P(x)=x2016±x2015±...±x±1 многочлен с коэффициентами ±1. Известно, что у него нет действительных корней. Какое максимальное количество коэффициентов -1 у него может быть?
Задачу решили:
41
всего попыток:
86
Пусть a, b, c, d - натуральные числа. Найти минимум выражения
Задачу решили:
21
всего попыток:
105
Найти количество действительных решений уравнения x3-[x3]-{x}3=0 для 1≤x<2015, где [x] и {x} - целая и дробная части числа x.
Задачу решили:
67
всего попыток:
88
Известно, что [x]*{x}=178, где [x] и {x} - соответственно целая и дробная части x, найти [x2]-[x]2.
Задачу решили:
43
всего попыток:
47
На стороне AC остроугольного треугольника ABC выбрана точка D. Медиана AM пересекает высоту CH и отрезок BD в точках N и K соответственно. При этом |AK| = |BK|, а |KM| = 5, найдите |AN|
Задачу решили:
47
всего попыток:
71
На совместной конференции партий лжецов и правдолюбов в президиум было избрано 32 человека, которых рассадили в четыре ряда по 8 человек. В перерыве каждый член президиума заявил, что среди его соседей есть представители обеих партий. Известно, что лжецы всегда лгут, а правдолюбы всегда говорят правду. При каком наименьшем числе лжецов в президиуме возможна описанная ситуация? (Два члена президиума являются соседями, если один из них сидит слева, справа, спереди или сзади от другого).
Задачу решили:
47
всего попыток:
49
Найдите свободный член многочлена P(x) с целыми коэффициентами, если известно, что он по модулю меньше тысячи, и P(19) = P(94) = 1994.
Задачу решили:
38
всего попыток:
53
Найти все такие f(x), что (x-1)f((x+1)/(x-1))-f(x)=x для x≠1. В ответе укажите сумму значений этих функций в точке x=2016
Задачу решили:
44
всего попыток:
49
Числовая последовательность a0, a1, a2, ... такова, что при всех неотрицательных m и n (m >= n) выполняется соотношение am+n + am−n = 1/2(a2m + a2n). Найдите a2016, если a1 = 1.
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|