Лента событий:
Lec добавил комментарий к задаче "Десятичная запись квадрата" (Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
133
всего попыток:
236
Пусть x — четырёхзначное число в десятичной записи. Я написала его цифры в обратном порядке и полученное число вычла из x. В результате я получила число 1818. Найти все такие числа x. В ответе укажите их количество.
Задачу решили:
171
всего попыток:
333
Гоблин родился в понедельник. Какой день недели будет через 3652011 суток после его рождения? (В ответе укажите: 1 — если понедельник, 2 — если вторник, 3 — если среда и т.д.)
Задачу решили:
240
всего попыток:
355
— Вот это мороз! — Да уж, страшно холодно. — А ты заметила, что оба термометра, один из которых показывает температуру по Цельсию, а другой — по Фаренгейту, стоят на одинаковой отметке? Сколько градусов на улице? (0 по Цельсию = 32 по Фаренгейту, а 100 по Цельсию = 212 по Фаренгейту.)
Задачу решили:
108
всего попыток:
319
Сколько натуральных чисел делят число 102011, но не делят число 102010?
Задачу решили:
78
всего попыток:
284
У остроугольного треугольника радиус описанной окружности равен 100. Найдите минимальное целое значение его периметра.
Задачу решили:
130
всего попыток:
147
Найдите такое наименьшее натуральное число N, что N/2 — квадрат натурального числа, N/3 — куб натурального числа, а N/5 — пятая степень натурального числа.
Задачу решили:
135
всего попыток:
159
Известно, что p, 4p2+1 и 6p2+1 — простые числа. Найдите наибольшее значение p.
Задачу решили:
130
всего попыток:
267
Перед Вами в ряд лежат 9 арбузов общим весом 70 кг. Для каждого арбуза (кроме первого и последнего) известен общий вес двух его соседей. У какого наибольшего числа арбузов можно однозначно определить вес?
Задачу решили:
135
всего попыток:
184
Два друга гуляли по парку. Все дорожки в парке — концентрические окружности и "радиусы" — отрезки, соединяющие некоторые точки самой внешней окружности с центром. Находясь как раз у одной из точек пересечения окружности с "радиусом", они вдруг подумали: — А интересно, какой путь короче: если идти сейчас по "радиусу" до более маленькой окружности, по ней идти до следующего "радиуса" и вернутся по нему к нашей окружности (этот путь изображён на рисунке зелённым цветом), или просто продолжить путь по нашей окружности до той же точки (на рисунке: красный цвет)? Решили попробовать, разделились, пошли с одинаковой скоростью этими двумя разными путями и... пришли к точке встречи одновременно! Чему равен угол между этими двумя "радиусами"?
Задачу решили:
103
всего попыток:
259
На шахматной доске случайным образом расставлены 2 фигуры: король и ладья. С какой вероятностью король бьет ладью?
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|