img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
отражение
Лента событий: putout добавил решение задачи "Три точки на прямой" (Математика):
Рисунок
Rss

Задачи: Математика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 40
всего попыток: 52
Задача опубликована: 24.03.14 08:00
Прислал: nauru img
Источник: Кубок Колмогорова
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: Hasmik33

Венцом последовательности назовем число, полученное так: сначала вычисляем модуль разности первого и второго членов, затем модуль разности этого числа и третьего члена и т.д. до последнего члена. Пусть у нас все 28 костяшек домино сложены в цепочку по правилам домино, то есть костяшки прикладываются половинками с одинаковыми числами. Числа на половинках образуют последовательность из 56 членов. Известно, что она начинается с пятерки. Чему равен венец этой последовательности?

Задачу решили: 54
всего попыток: 152
Задача опубликована: 21.04.14 10:11
Прислал: Dremov_Victor img
Источник: Корейская математическая олимпиада
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100

Для натурального числа k обозначим
ak = ((2k)30 - 1) / 31,
S = a1 + a2 + ... + a10.
Найдите остаток от деления S на 31.

Задачу решили: 43
всего попыток: 72
Задача опубликована: 28.04.14 08:00
Прислал: Dremov_Victor img
Источник: Корейская математическая олимпиада
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: Sam777e

Для целых чисел a, b, c, n, удовлетворяющих двум следующим условиям, найдите 7a + 13b + 97c.
(i) 31024 - 21024 = 7a × 13b × 97c × n;
(ii) 7 × 13 × 97 и n взаимно просты.

Задачу решили: 44
всего попыток: 205
Задача опубликована: 02.05.14 08:00
Прислал: Dremov_Victor img
Источник: Корейская математическая олимпиада
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: trial (Трибунал Данилов)

Найдите остаток от деления на 155 следующего выражения:
\sum_{n = 1}^{154} \sum_{k = 1}^{1000} n^k

Задачу решили: 50
всего попыток: 61
Задача опубликована: 07.05.14 08:00
Прислал: Dremov_Victor img
Источник: Корейская математическая олимпиада
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: levvol

Положительные целые числа x, y удовлетворяют условию y2 = (x2 - 482)(x2 - 552). Найдите остаток от деления x + y на 1000.

Задачу решили: 43
всего попыток: 69
Задача опубликована: 03.12.14 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100

Найти сумму всех целых чисел n таких, что
n2+2 | 2014n+2. ( a | b - означает, что a делит b, или a является делителем числа b)

Задачу решили: 66
всего попыток: 97
Задача опубликована: 07.01.15 08:00
Прислал: levvol img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100

Найти наименьшее натуральное число N такое, что N! кратно 102015.

Задачу решили: 40
всего попыток: 242
Задача опубликована: 09.02.15 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: levvol

В школе учится 100 учеников и для каждого имеется свой шкафчик. Все школьники имеют свои номера, соответствующие номерам шкафчиков. Изначально все шкафчики закрыты. Школьники приходят в порядке нумерации.

Когда приходит школьник 1, то он открывает все шкафчики.

Школьник 2 закрывает каждый 2-й шкафчик.

Школьник 3 изменяет состояние каждого 3-го шкафчика: если открыт, то закрывает, если закрыт, то открывает.

Школьник 4 изменяет состояние каждого 4-го шкафчика. И т.д. до 100-го школьника. 

Если какой-то школьник не приходит, то никто не выполняет за него указанную процедуру.

В один из дней все шкафчики были закрыты, кроме 1-го. Сколько в этот день отсутствовало школьников?

Задачу решили: 35
всего попыток: 54
Задача опубликована: 10.04.15 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: snape

Пусть k, m, n - натуральные числа меньшие чем 1215. Найти количество упорядоченных троек таких, что k2+7m2+5, m2+7n2+5, n2+7k2+5 - являются целыми квадратами.

Задачу решили: 38
всего попыток: 62
Задача опубликована: 29.05.15 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: Sam777e

При представлении числа N в виде N=±1±2±3±...±100 можно в любом месте выбирать знак "плюс" или "минус". Сколько чисел можно представить в таком виде?

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.