img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
отражение
Лента событий: solomon добавил комментарий к решению задачи "Дырявый квадрат-4" (Математика):
Рисунок
Rss

Задачи: Математика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 48
всего попыток: 148
Задача опубликована: 23.10.17 08:00
Прислал: solomon img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: volinad (Владимир Алексеевич Данилов)

В треугольнике АВС проведены прямые параллельно сторонам АВ, ВС, СА, каждая из которых делит площадь треугольника пополам. При пересечении этих прямых внутри треугольника АВС образуется треугольник DEF. Найти отношение площади треугольника АВС к площади треугольника DEF (округлить число до ближайшего целого).

Задачу решили: 22
всего попыток: 125
Задача опубликована: 08.11.17 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: Vkorsukov

Сколько существует способов разломать плитку шоколада размера 6x4 на части 2x1?

Задачу решили: 45
всего попыток: 67
Задача опубликована: 13.11.17 08:00
Прислал: solomon img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: Sam777e

В треугольнике АВС внутри взята произвольно точка О,через которую проведены три прямые, паралельно сторонам АВ, ВС, АС. При  этом треугольник разделился на 6 частей (3 треугольника и 3 паралеллограмма). Известно,что площади этих треугольников 25, 36 и 49. Найти общую площадь 3-х паралеллограммов.

Задачу решили: 43
всего попыток: 85
Задача опубликована: 15.11.17 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: Marutand

Числа от 1 до 100 разделены на множества так, что в каждом множестве любое число не делится на другие числа множества. Какое минимальное число таких множеств возможно?

Задачу решили: 59
всего попыток: 70
Задача опубликована: 11.12.17 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: TALMON (Тальмон Сильвер)

Натуральное число N имеет ровно 10 делителей, 2N - ровно 15 делителей, 3N - ровно 20 делителей. Сколько делителей у числа 4N?

Задачу решили: 51
всего попыток: 60
Задача опубликована: 09.02.18 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: kknop (Константин Кноп)

На стороне 12-угольника построен квадрат. Найдите отмеченный угол в градусах.

12+4.jpg

Задачу решили: 45
всего попыток: 59
Задача опубликована: 21.03.18 08:00
Прислал: TALMON img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: Buuul (Майк Бул)

Элементы квадратной матрицы 3 на 3 - различные действительные числа. Произведения трёх элементов каждой строки, каждого столбца и каждой большой диагонали равны одному и тому же натуральному числу. Какое минимально возможное значение этого натурального числа?

Задачу решили: 28
всего попыток: 66
Задача опубликована: 11.04.18 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: georgp

В русском алфавите 33 буквы. Посчитайте сколько можно составить слов из 6 букв таких, что в словах используются только разные буквы, и не встречаются буквы, которые стоят в алфавите рядом. Например, слово "ОГУРЕЦ" удовлетворяет условию, а "СВЁКЛА" - нет

Задачу решили: 44
всего попыток: 103
Задача опубликована: 20.04.18 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: Mangoost (Сергей Савинов)

Найти количество целочисленных пар (x, y) таких, что 0 ≤ y ≤ 2017 и x2+y2+(x+y)2=y3

Задачу решили: 24
всего попыток: 42
Задача опубликована: 14.05.18 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: Vkorsukov

Найти количество пар натуральных чисел (m, n) m < n ≤ 100 для которых есть по крайней мере одно натуральное число k (m < k < n) которое делится на любой общий делитель m и n.  

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.