img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
отражение
Лента событий: Lec добавил комментарий к задаче "Десятичная запись квадрата" (Математика):
Рисунок
Rss

Задачи: Математика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 41
всего попыток: 250
Задача опубликована: 09.07.12 15:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Темы: алгоритмыimg
Лучшее решение: nellyk

Среди X монет одна фальшивая (более лёгкая). Известно, что её заведомо можно найти не более, чем за 100 взвешиваний на чашечных весах без гирь, при этом каждую монету нельзя взвешивать более двух раз. Найдите наибольшее значение X.

Задачу решили: 75
всего попыток: 113
Задача опубликована: 18.07.12 08:00
Прислал: Dremov_Victor img
Источник: Корейская математическая олимпиада
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: levvol

Найдите количество 11-элементных подмножеств множества {1, 2, ... , 23}, сумма элементов которых равна 194.

Задачу решили: 38
всего попыток: 295
Задача опубликована: 23.07.12 08:00
Прислал: Dremov_Victor img
Источник: Корейская математическая олимпиада
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: zmerch

Найдите наименьшее натуральное n, такое что существует функция f:{1,2,...,20} → {1,2,...,n}, удовлетворяющая следующему условию: 2·f(k+1)<f(k)+f(k+2), k=1,2,...,18.

Задачу решили: 39
всего попыток: 115
Задача опубликована: 17.08.12 08:00
Прислал: TALMON img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: nellyk

Рассмотрим монотонно возрастающую последовательность всех натуральных чисел, которые являются суммой цифр квадрата хотя бы одного натурального числа (в десятичной системе счисления).

Чему равен миллионный член этой последовательности?

Задачу решили: 48
всего попыток: 355
Задача опубликована: 22.08.12 08:00
Прислал: Dremov_Victor img
Источник: Корейская математическая олимпиада
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: Sam777e

На экзамене 16 школьников решали 30 задач. Каждый ученик верно решил не более 15 задач, а каждую задачу решило не менее 8 школьников. При этом для любой пары школьников количество задач, решенных ими обоими, одинаково и равно n. Найдите n.

Задачу решили: 52
всего попыток: 157
Задача опубликована: 03.09.12 08:00
Прислал: Dremov_Victor img
Источник: Корейская математическая олимпиада
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: leonid (Леонид Шляпочник)

Для натурального числа k обозначим

a_k = \cfrac{361984!}{k!(361984 - k)!}. 

Найдите наибольший общий делитель чисел a_1, a_3, a_5, \ldots, a_{361983}.

Задачу решили: 48
всего попыток: 238
Задача опубликована: 10.09.12 08:00
Прислал: Dremov_Victor img
Источник: Корейская математическая олимпиада
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: bbny

Найдите наибольшее натуральное a, для которого существует такое натуральное b, что ab+2a=b4a.

Задачу решили: 70
всего попыток: 119
Задача опубликована: 17.09.12 08:00
Прислала: allanick img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: Vkorsukov

В прямоугольном треугольнике ABC с прямым углом при вершине А, биссектриса прямого угла пересекает гипотенузу BC в точке D, так что DAB = 45°.  Если CD = 1 и BD = AD + 1,  найти длину AD.

m111_.png

 

Ответ представить в виде целого числа, умножив результат на 1000 и  округлив до ближайшего целого.

Задачу решили: 55
всего попыток: 67
Задача опубликована: 19.09.12 08:00
Прислал: Dremov_Victor img
Источник: Корейская математическая олимпиада
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: bbny

Пусть t_1, t_2, \ldots, t_{1004} --- все натуральные числа, меньшие 2012 и взаимно простые с 2012. Найдите значение суммы дробных частей \sum \limits_{i = 1} ^{1004} \biggl\{\cfrac{523t_i}{2012}\biggr\}. (Здесь {x} обозначает дробную часть x, {x}=x-[x], где [x] наибольшее целое число, не превосходящее x (целая часть x).)

Задачу решили: 46
всего попыток: 60
Задача опубликована: 28.09.12 08:00
Прислал: OlegSha img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: Timur

В остроугольном треугольнике ABC угол которого \angle A = \frac{\pi}{4}, внутри отрезков AB и AC можно выбрать две точки D и E так, что BD=CE=BC. Найдите длину отрезка DE, если квадрат расстояния между центрами вписанной и описанной окружностей треугольника ABC d^2=72962.

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.