Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
56
всего попыток:
64
Вычислите целую часть x.
Задачу решили:
48
всего попыток:
63
Трехзначное число равно сумме его первой цифры, квадрата второй цифры и куба третьей цифры. Найдите все трехзначные числа, обладающие таким свойством. В ответе укажите их сумму.
Задачу решили:
36
всего попыток:
54
Куб распилили по 3-м плоскостям XOY, XOZ, YOZ и получили 8 брусков, у семи из которых известны площади поверхностей 148, 126, 88, 72, 58, 46, 28. Найти длину ребра куба.
Задачу решили:
37
всего попыток:
53
Плоская металлическая фигура имеет форму трапеции. Докажите, что её центр тяжести лежит на отрезке, соединяющем середины оснований трапеции. Выясните, в каком отношении (меньшее число к большему) центр тяжести трапеции делит этот отрезок, если основания трапеции равны 1 и 2.
Задачу решили:
23
всего попыток:
31
В квадрате ABCD помечены середины всех 4-х его сторон. Какое минимальное количество линий нужно провести с помощью линейки без делений, чтобы разделить квадрат на 5 равновеликих частей?
Задачу решили:
27
всего попыток:
79
На какое наименьшее число частей можно разрезать поверхность правильного тетраэдра так, чтобы оклеить куб без пробелов и наложений?
Задачу решили:
19
всего попыток:
36
Сколько различных прямых можно провести через все пары точек, расположенных в узлах квадратной решетки 100х100?
Задачу решили:
4
всего попыток:
53
Дан квадрат ABCD. Какое минимальное количество прямых нужно провести с помощью линейки без делений, чтобы разделить его на 5 равновеликих частей?
Задачу решили:
17
всего попыток:
45
В ряду стоят несколько книг с разным количеством страниц. Каждая книга состоит из одной или нескольких глав и сшита из 12 одинаковых тетрадей, каждая тетрадь - из нескольких двойных листов, вложенных друг в друга. Если в главе более одной тетради, то все они вложены друг в друга. Первой из вложенных друг в друга тетрадей считается та, в которую вложены все остальные и т.д. Все страницы каждой книги пронумерованы, начиная с 1. Сумма номеров четырех страниц одного из двойных листов четвертой тетради каждой книги равна 338. Найдите максимально возможное общее колличество страниц во всех книгах ряда.
Задачу решили:
31
всего попыток:
40
На сторонах треугольника АВС отмечены середины сторон точками А1В1С1 (соответственно против вершин АВС). Также произвольно отмечены точки К на отрезке А1В, М на отрезке АВ1. Далее проведены отрезки А1М, В1К, С1К, С1М. Обозначив точку пересечения отрезков А1М и В1К через О,видно,что треугольник АВС разделен на 2 четырехугольника и 4 треугольника. Найти разность между суммарной площадью четырехугольников и суммарной площадью треугольников, если известно,что площадь четырехугольника ОА1СВ1=15, площадь треугольника АВС=48.
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|