Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
10
всего попыток:
11
Дан треугольник ABC. Точка J - это центр окружности, которая касается стороны BC и продолжений сторон AB и AC. Точки P, B, C, Q лежат в этой последовательности на одной прямой, причём |PB| = |AB| и |QC| = |AC|. Найти сумму углов BAC и QJP в градусах.
Задачу решили:
13
всего попыток:
29
Рассмотрим замкнутую цепочку из m правильных n-угольников, центры которых являются вершинами правильного m-угольника. Каждые два соседних n-угольника имеют одну общую сторону. Другие k стороны каждого n-угольника находятся целиком внутри m-угольника, образуя в совокупности равносторонний m*k-угольник (на изображении примера для n=10, k=2, m=5 он покрашен в красный цвет): Заметим, что не всегда удаётся замкнуть цепочку. Найдите количество троек {n, k, m}, для которых существуют замкнутые цепочки, в пределах 4 < n < 13, k>0.
Задачу решили:
11
всего попыток:
12
Действительные отличные от нуля числа x, y таковы, что
Задачу решили:
22
всего попыток:
28
Внутри эллипса находятся три окружности. Центр первой окружности совпадает с центром эллипса и эта окружность имеет с эллипсом две точки касания. Центры двух других окружностей совпадают с фокусами эллипса и каждая из них имеет одну точку касания с эллипсом и одну точку касания с первой окружностью. Найдите отношение полуосей эллипса (меньшей к большей).
Задачу решили:
22
всего попыток:
23
В ромб вписана окружность, которая делит его большую диагональ на три части в отношении 1:3:1. В каком отношении эта окружность делит меньшую диагональ ромба? Если искомое отношение n:m:n, то в ответе запишите трехзначное число nmn.
Задачу решили:
17
всего попыток:
23
В трапеции с целочисленными основаниями проведены три параллельных целочисленных отрезка: 1) через точку пересечения диагоналей. 2) средняя линия трапеции. 3) отрезок деления данной трапеции на две равновеликие трапеции. Найти наименьшую сумму длин всех пяти отрезков, включая основания данной трапеции.
Задачу решили:
11
всего попыток:
17
4 параллельных прямых расположены на плоскости одна за другой на одинаковых растояниях. 4 других параллельных прямых, не параллельных предыдущим прямым, также расположены на той же плоскости одна за другой на одинаковых растояниях. Наконец, третья группа 4-х параллельных прямых, не параллельных предыдущим, тоже расположены на той же плоскости одна за другой на одинаковых растояниях. Эти 12 прямых делят плоскость на n областей. Найдите сумму всех возможных значений n.
Задачу решили:
21
всего попыток:
23
В описанной трапеции ABCD (AD и ВС - основания) |АВ|=21, |ВС|=9, |CD|=24. Найти длину хорды вписанной окружности, образованной диагональю АС.
Задачу решили:
22
всего попыток:
32
Вписанная в трапецию окружность разделила среднюю линию на три отрезка 3, 24, 8. Найти длину большого основания.
Задачу решили:
22
всего попыток:
24
Точка вне квадрата находится на расстояниях от концов одной из диагоналей в отношении между собой 1:4. Угол между отрезками этих расстояний прямой. Найти отношение расстояний от этой точки до концов другой диагонали (меньшего к большему).
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|